Nomogram based on dual-energy CT-derived extracellular volume fraction for the prediction of microsatellite instability status in gastric cancer

列线图 医学 癌症 逻辑回归 接收机工作特性 核医学 单变量分析 内科学 肿瘤科 放射科 多元分析
作者
Wenjun Hu,Ying‐Yong Zhao,Hongying Ji,Anliang Chen,Qihao Xu,Yijun Liu,Ziming Zhang,Ailian Liu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fonc.2024.1370031
摘要

Purpose To develop and validate a nomogram based on extracellular volume (ECV) fraction derived from dual-energy CT (DECT) for preoperatively predicting microsatellite instability (MSI) status in gastric cancer (GC). Materials and methods A total of 123 patients with GCs who underwent contrast-enhanced abdominal DECT scans were retrospectively enrolled. Patients were divided into MSI (n=41) and microsatellite stability (MSS, n=82) groups according to postoperative immunohistochemistry staining, then randomly assigned to the training (n=86) and validation cohorts (n=37). We extracted clinicopathological characteristics, CT imaging features, iodine concentrations (ICs), and normalized IC values against the aorta (nICs) in three enhanced phases. The ECV fraction derived from the iodine density map at the equilibrium phase was calculated. Univariate and multivariable logistic regression analyses were used to identify independent risk predictors for MSI status. Then, a nomogram was established, and its performance was evaluated by ROC analysis and Delong test. Its calibration performance and clinical utility were assessed by calibration curve and decision curve analysis, respectively. Results The ECV fraction, tumor location, and Borrmann type were independent predictors of MSI status (all P < 0.05) and were used to establish the nomogram. The nomogram yielded higher AUCs of 0.826 (0.729–0.899) and 0.833 (0.675–0.935) in training and validation cohorts than single variables ( P <0.05), with good calibration and clinical utility. Conclusions The nomogram based on DECT-derived ECV fraction has the potential as a noninvasive biomarker to predict MSI status in GC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssl完成签到 ,获得积分10
1秒前
蒲公英发布了新的文献求助10
1秒前
1秒前
阿飘应助是星星啊采纳,获得10
1秒前
QuxiZhang完成签到 ,获得积分10
1秒前
TT发布了新的文献求助10
2秒前
大鲨鱼完成签到,获得积分10
2秒前
重要手机发布了新的文献求助10
2秒前
zongyuan发布了新的文献求助10
3秒前
123完成签到,获得积分20
3秒前
3秒前
小糯米发布了新的文献求助10
4秒前
5秒前
一二三四完成签到 ,获得积分10
5秒前
小蘑菇应助平淡的钥匙采纳,获得10
5秒前
genggeng发布了新的文献求助10
6秒前
ccc发布了新的文献求助10
6秒前
misha991完成签到,获得积分10
6秒前
7秒前
蟹xie发布了新的文献求助10
7秒前
7秒前
木笔朱瑾完成签到 ,获得积分10
8秒前
彭于彦祖应助max采纳,获得30
9秒前
9秒前
Sonny发布了新的文献求助10
11秒前
落后立果发布了新的文献求助30
12秒前
ccc完成签到,获得积分10
12秒前
1108发布了新的文献求助10
12秒前
14秒前
劲秉应助tooty采纳,获得10
15秒前
Singularity应助恩善采纳,获得10
16秒前
yyy完成签到,获得积分10
16秒前
在水一方应助TT采纳,获得10
18秒前
18秒前
Ling发布了新的文献求助10
19秒前
传奇3应助lx采纳,获得10
19秒前
222完成签到,获得积分10
20秒前
Yifan2024应助悦耳的黑米采纳,获得20
24秒前
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Organic Chemistry of Explosives 600
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3355175
求助须知:如何正确求助?哪些是违规求助? 2979173
关于积分的说明 8689329
捐赠科研通 2660774
什么是DOI,文献DOI怎么找? 1456810
科研通“疑难数据库(出版商)”最低求助积分说明 674479
邀请新用户注册赠送积分活动 665381