Digital Signal Processing Techniques for Noise Characterization of Lasers and Optical Frequency Combs: A Tutorial

表征(材料科学) 激光器 信号(编程语言) 信号处理 噪音(视频) 计算机科学 数字信号处理 电子工程 光电子学 电信 光学 物理 工程类 计算机硬件 人工智能 图像(数学) 程序设计语言
作者
Jasper Riebesehl,Holger R. Heebøll,А Н Разумов,Michael Galili,Darko Zibar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.17131
摘要

Performing noise characterizations of lasers and optical frequency combs on sampled and digitized data offers numerous advantages compared to analog measurement techniques. One of the main advantages is that the measurement setup is greatly simplified. Only a balanced detector followed by an analog-to-digital converter is needed, allowing all the complexity to be moved to the digital domain. Secondly, near-optimal phase estimators are efficiently implementable, providing accurate phase noise estimation in the presence of the measurement noise. Finally, joint processing of multiple comb lines is feasible, enabling computation of phase noise correlation matrix, which includes all information about the phase noise of the optical frequency comb. This tutorial introduces a framework based on digital signal processing for phase noise characterization of lasers and optical frequency combs. The framework is based on the extended Kalman filter (EKF) and automatic differentiation. The EKF is a near-optimal estimator of the optical phase in the presence of measurement noise, making it very suitable for phase noise measurements. Automatic differentiation is key to efficiently optimizing many parameters entering the EKF framework. More specifically, the combination of EKF and automatic differentiation enables the efficient optimization of phase noise measurement for optical frequency combs with arbitrarily complex noise dynamics that may include many free parameters. We show the framework's efficacy through simulations and experimental data, showcasing its application across various comb types and in dual-comb measurements, highlighting its accuracy and versatility. Finally, we discuss its capability for digital phase noise compensation, which is highly relevant to free-running dual-comb spectroscopy applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的怀曼完成签到,获得积分10
1秒前
1秒前
安子歌完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
hahaagain完成签到,获得积分10
4秒前
汉堡包应助核桃采纳,获得10
4秒前
科研通AI6应助核桃采纳,获得10
4秒前
科目三应助核桃采纳,获得10
4秒前
淡然的妙芙应助核桃采纳,获得10
4秒前
大宝完成签到,获得积分10
4秒前
乐乐应助核桃采纳,获得10
4秒前
4秒前
彭于晏应助核桃采纳,获得10
5秒前
Owen应助核桃采纳,获得10
5秒前
SciGPT应助核桃采纳,获得10
5秒前
5秒前
华仔应助核桃采纳,获得10
5秒前
5秒前
6秒前
yiyao完成签到,获得积分10
6秒前
7秒前
Lybb完成签到,获得积分10
7秒前
甜乎贝贝发布了新的文献求助20
7秒前
共享精神应助玉婷采纳,获得10
8秒前
香蕉觅云应助小宇仔采纳,获得10
8秒前
adad发布了新的文献求助10
8秒前
共享精神应助核桃采纳,获得10
9秒前
wanci应助核桃采纳,获得10
9秒前
chlift发布了新的文献求助10
9秒前
lgq12697应助核桃采纳,获得10
9秒前
852应助核桃采纳,获得10
9秒前
李健应助核桃采纳,获得30
9秒前
顾矜应助核桃采纳,获得10
9秒前
天天快乐应助核桃采纳,获得10
9秒前
香蕉觅云应助核桃采纳,获得10
9秒前
李健应助核桃采纳,获得10
9秒前
爆米花应助核桃采纳,获得10
9秒前
无花果应助太空人采纳,获得30
10秒前
共享精神应助流泪猫猫头采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095428
求助须知:如何正确求助?哪些是违规求助? 4308538
关于积分的说明 13424622
捐赠科研通 4135366
什么是DOI,文献DOI怎么找? 2265484
邀请新用户注册赠送积分活动 1268868
关于科研通互助平台的介绍 1204869