A machine learning approach utilizing DNA methylation as a classifier for Pulmonary Tuberculosis screening

肺结核 分类器(UML) DNA甲基化 计算机科学 计算生物学 肺结核 人工智能 机器学习 生物 医学 遗传学 病理 基因 基因表达
作者
Nhat Thong Le,Thi Thu Hien,Doan Minh Trung Duong,Doan Hong Ngoc Tran,Thuc Quyen Huynh,Khon Huynh,Nguyễn Phương Thảo,Minh Thong Le,Thi Thu Hoai Nguyen
出处
期刊:Gene Reports [Elsevier]
卷期号:36: 101939-101939
标识
DOI:10.1016/j.genrep.2024.101939
摘要

Tuberculosis (TB), resulting from the Mycobacterium tuberculosis (Mtb) infection, ranks among the deadliest infectious diseases, with an estimated 1.6 million human fatalities recorded in 2022. Recently, non-sputum DNA methylation biomarkers emerged as a promising approach for rapid detection of TB infection. However, comprehensive work to explore potential of DNA methylation in TB prediction has been infrequent. Here, we aimed to introduce a novel set of blood DNA methylation biomarkers associated with TB infection. We conducted a pooled analysis of DNA methylation datasets which contain 290 Mtb infected samples. We built and followed an in-house pipeline to identify differentially methylated CpGs (DMCs). Feature selection and five machine learning algorithms were used to construct classifiers that could predict infectious Mtb. Simultaneously, the performance of the classifiers was evaluated in discovery datasets and in an independent cohort. We also used GO and KEGG pathway enrichment to characterize the correlation between alterations of DNA methylation and immune processes responding to Mtb infection. Our data showed that a major number of active alterations in DNA methylation were hypo-methylated. Significantly, we observed a high association between the reduction of DNA methylation and the activation immune system process. Multivariate analysis MUVR using random forest core algorithm (12-CpG model) combined with random forest classifier showed high performance with the sensitivity of 90 %, the specificity of 82 % and AUC of 0.91 (95 % CI: 0.85–0.97) in the validation cohort. Further differential analysis of Bacillus Calmette-Guerin (BCG) vaccination groups and HIV - Mtb coinfection showed clear differences between BCG and non-BCG groups, as well as between HIV - Mtb coinfection, Mtb infection and healthy samples; which showed high potential to overcome traditional methods. Collectively, DNA methylation was a promising method for early detection of tuberculosis and potentially a clinical tool for TB diagnostic biomarkers. Further external validation studies are needed to confirm the impact of our tool in daily practice. To make our model and the collected data widely available for the scientific community, we hosted both on a publicly accessible website at https://tbpred.shinyapps.io/shinyr/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫毛完成签到,获得积分10
3秒前
lilili完成签到,获得积分10
4秒前
5秒前
kxdxng完成签到,获得积分10
5秒前
CodeCraft应助lyx采纳,获得10
5秒前
ke研白发布了新的文献求助10
5秒前
斯文败类应助茶多一点酚采纳,获得10
6秒前
7秒前
kento发布了新的文献求助10
8秒前
8秒前
9秒前
大聪明发布了新的文献求助30
12秒前
12秒前
ke研白完成签到,获得积分10
13秒前
CX330完成签到 ,获得积分10
14秒前
傻瓜子发布了新的文献求助10
14秒前
Serendipity完成签到,获得积分10
14秒前
16秒前
17秒前
难摧发布了新的文献求助10
18秒前
克丽完成签到 ,获得积分10
20秒前
由富完成签到,获得积分20
21秒前
21秒前
xelloss发布了新的文献求助10
21秒前
22秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
Lucas应助视野胤采纳,获得10
23秒前
kanuary发布了新的文献求助10
25秒前
大聪明完成签到,获得积分20
29秒前
HR112应助由富采纳,获得10
31秒前
kanuary完成签到,获得积分10
31秒前
在水一方应助飞兰采纳,获得10
33秒前
研友_VZG7GZ应助傻瓜子采纳,获得10
35秒前
39秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228