已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tumor habitat and peritumoral region evolution–based imaging features to assess risk categorization of thymomas

医学 胸腺瘤 接收机工作特性 放射科 肿瘤科 内科学 病理
作者
Wei Liu,Weili Wang,Min Guo,Hong Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (9): e1117-e1125 被引量:1
标识
DOI:10.1016/j.crad.2024.05.010
摘要

Background A habitat and peritumoral analysis could provide a more accurate reflection of tumor heterogeneity than a whole-tumor analysis. It could have a significant impact on thymoma patient outcomes. Purpose Our purpose was to develop an aggregate model that incorporates clinical and habitat characteristics and radiomic features to assess the risk categorization of thymomas. Methods We retrospectively analyzed 140 thymoma patients (70 low-risk and 70 high-risk), including pathological data. The patients were randomly divided into training cohort (n=114) and test cohort (n=26). The k-means clustering was utilized to partition the primary tumor into habitats based on intratumoral radiomic features, 6 distinct habitats were identified. By expanding the region of interest (ROI) mask, 2 peritumoral regions were obtained. Finally, 7 clinical characteristics, 3 habitat values, 20 radiomic features were utilized to develop an aggregated model, to predict the risk of thymoma. Shapley Additive exPlanations (SHAP) interpretation was used for features importance ranking. The accuracy and AUC were used to analyze the performance of the models. Results The aggregated model, which utilized the XGBoost classifier, demonstrated the best performance with an AUC of 0.811 and an accuracy of 0.769. In comparison, the radiomic model produced an AUC of 0.654 and an accuracy of 0.692. Additionally, the Intratumoral+peritumoral model exhibited an AUC of 0.728 and an accuracy of 0.769. Conclusions Our study establishes a novel tool to predict the risk of thymoma with a good performance. If prospectively validated, the model may refine thymoma patient selection for risk-adaptative therapy and improve prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
zhaofx发布了新的文献求助30
3秒前
蘑菇怪发布了新的文献求助10
3秒前
msp完成签到,获得积分10
3秒前
浮游应助杜宇采纳,获得10
4秒前
4秒前
7秒前
热电CAT完成签到,获得积分10
7秒前
淡淡尔烟完成签到,获得积分20
8秒前
wanci应助龙肆采纳,获得10
8秒前
8秒前
9秒前
科研通AI5应助衷医课代表采纳,获得10
9秒前
9秒前
shen发布了新的文献求助10
9秒前
拼搏的璇发布了新的文献求助10
12秒前
酒酿圆子发布了新的文献求助30
13秒前
13秒前
Wangyidi发布了新的文献求助10
14秒前
15秒前
15秒前
火的信仰完成签到 ,获得积分10
15秒前
16秒前
16秒前
顺心亦云发布了新的文献求助10
16秒前
17秒前
18秒前
喵了个咪发布了新的文献求助30
20秒前
卞仁吉发布了新的文献求助10
20秒前
zhujun发布了新的文献求助10
21秒前
peng123发布了新的文献求助10
23秒前
止血钳完成签到 ,获得积分10
24秒前
QYQ完成签到 ,获得积分10
24秒前
靓丽的擎完成签到,获得积分10
24秒前
万能图书馆应助22222采纳,获得10
25秒前
25秒前
26秒前
27秒前
Bob完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943657
求助须知:如何正确求助?哪些是违规求助? 4208947
关于积分的说明 13084244
捐赠科研通 3988330
什么是DOI,文献DOI怎么找? 2183567
邀请新用户注册赠送积分活动 1199094
关于科研通互助平台的介绍 1111805