Tumor habitat and peritumoral region evolution–based imaging features to assess risk categorization of thymomas

医学 胸腺瘤 接收机工作特性 放射科 肿瘤科 内科学 病理
作者
Wei Liu,Weili Wang,Min Guo,Hong Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (9): e1117-e1125 被引量:1
标识
DOI:10.1016/j.crad.2024.05.010
摘要

Background A habitat and peritumoral analysis could provide a more accurate reflection of tumor heterogeneity than a whole-tumor analysis. It could have a significant impact on thymoma patient outcomes. Purpose Our purpose was to develop an aggregate model that incorporates clinical and habitat characteristics and radiomic features to assess the risk categorization of thymomas. Methods We retrospectively analyzed 140 thymoma patients (70 low-risk and 70 high-risk), including pathological data. The patients were randomly divided into training cohort (n=114) and test cohort (n=26). The k-means clustering was utilized to partition the primary tumor into habitats based on intratumoral radiomic features, 6 distinct habitats were identified. By expanding the region of interest (ROI) mask, 2 peritumoral regions were obtained. Finally, 7 clinical characteristics, 3 habitat values, 20 radiomic features were utilized to develop an aggregated model, to predict the risk of thymoma. Shapley Additive exPlanations (SHAP) interpretation was used for features importance ranking. The accuracy and AUC were used to analyze the performance of the models. Results The aggregated model, which utilized the XGBoost classifier, demonstrated the best performance with an AUC of 0.811 and an accuracy of 0.769. In comparison, the radiomic model produced an AUC of 0.654 and an accuracy of 0.692. Additionally, the Intratumoral+peritumoral model exhibited an AUC of 0.728 and an accuracy of 0.769. Conclusions Our study establishes a novel tool to predict the risk of thymoma with a good performance. If prospectively validated, the model may refine thymoma patient selection for risk-adaptative therapy and improve prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知了完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
迅速凝竹完成签到 ,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
daheeeee完成签到,获得积分10
6秒前
阿里山完成签到,获得积分10
6秒前
光亮萤完成签到,获得积分10
14秒前
研友_VZG7GZ应助ommphey采纳,获得30
14秒前
why发布了新的文献求助10
17秒前
就好完成签到 ,获得积分10
18秒前
19秒前
ZBY0216完成签到,获得积分10
19秒前
huang完成签到,获得积分20
20秒前
innocent完成签到,获得积分10
21秒前
yu发布了新的文献求助30
22秒前
崔宁宁完成签到 ,获得积分10
23秒前
淡淡阁完成签到 ,获得积分10
23秒前
潜山耕之完成签到,获得积分10
25秒前
jslsny完成签到,获得积分20
25秒前
liangguangyuan完成签到 ,获得积分10
26秒前
666星爷完成签到,获得积分10
32秒前
FashionBoy应助TURBO采纳,获得10
33秒前
聪明小丸子完成签到,获得积分10
35秒前
why完成签到,获得积分10
37秒前
wangqinlei完成签到 ,获得积分10
38秒前
小稻草人完成签到,获得积分10
38秒前
Java完成签到,获得积分10
39秒前
mc完成签到 ,获得积分10
39秒前
封似狮完成签到,获得积分10
42秒前
材1完成签到 ,获得积分10
42秒前
Green完成签到,获得积分10
43秒前
哈哈哈完成签到 ,获得积分10
43秒前
在水一方完成签到 ,获得积分10
43秒前
Linda完成签到,获得积分10
45秒前
46秒前
Liang完成签到,获得积分10
46秒前
47秒前
LIUJIE完成签到,获得积分10
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957139
求助须知:如何正确求助?哪些是违规求助? 3503185
关于积分的说明 11111460
捐赠科研通 3234287
什么是DOI,文献DOI怎么找? 1787829
邀请新用户注册赠送积分活动 870783
科研通“疑难数据库(出版商)”最低求助积分说明 802318