Tumor habitat and peritumoral region evolution–based imaging features to assess risk categorization of thymomas

医学 胸腺瘤 接收机工作特性 放射科 肿瘤科 内科学 病理
作者
Wei Liu,Weili Wang,Min Guo,Hong Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (9): e1117-e1125
标识
DOI:10.1016/j.crad.2024.05.010
摘要

Background A habitat and peritumoral analysis could provide a more accurate reflection of tumor heterogeneity than a whole-tumor analysis. It could have a significant impact on thymoma patient outcomes. Purpose Our purpose was to develop an aggregate model that incorporates clinical and habitat characteristics and radiomic features to assess the risk categorization of thymomas. Methods We retrospectively analyzed 140 thymoma patients (70 low-risk and 70 high-risk), including pathological data. The patients were randomly divided into training cohort (n=114) and test cohort (n=26). The k-means clustering was utilized to partition the primary tumor into habitats based on intratumoral radiomic features, 6 distinct habitats were identified. By expanding the region of interest (ROI) mask, 2 peritumoral regions were obtained. Finally, 7 clinical characteristics, 3 habitat values, 20 radiomic features were utilized to develop an aggregated model, to predict the risk of thymoma. Shapley Additive exPlanations (SHAP) interpretation was used for features importance ranking. The accuracy and AUC were used to analyze the performance of the models. Results The aggregated model, which utilized the XGBoost classifier, demonstrated the best performance with an AUC of 0.811 and an accuracy of 0.769. In comparison, the radiomic model produced an AUC of 0.654 and an accuracy of 0.692. Additionally, the Intratumoral+peritumoral model exhibited an AUC of 0.728 and an accuracy of 0.769. Conclusions Our study establishes a novel tool to predict the risk of thymoma with a good performance. If prospectively validated, the model may refine thymoma patient selection for risk-adaptative therapy and improve prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
想飞的猪发布了新的文献求助10
1秒前
光亮小笼包完成签到 ,获得积分10
1秒前
Snail6完成签到,获得积分10
2秒前
阻塞阀完成签到,获得积分10
2秒前
好想被风刮走完成签到,获得积分10
2秒前
www完成签到,获得积分10
2秒前
ya完成签到,获得积分10
3秒前
宇文老九完成签到,获得积分10
3秒前
3秒前
超级涔雨完成签到,获得积分10
4秒前
5秒前
antman完成签到,获得积分10
5秒前
fixit完成签到,获得积分10
5秒前
东东q东东完成签到,获得积分10
6秒前
虚幻的夜天完成签到 ,获得积分10
6秒前
zxm发布了新的文献求助30
6秒前
6秒前
直率小霜发布了新的文献求助10
6秒前
lj完成签到 ,获得积分10
6秒前
宇文老九发布了新的文献求助10
6秒前
6秒前
尉迟冰蓝发布了新的文献求助10
7秒前
天涯完成签到 ,获得积分10
8秒前
8秒前
个性的紫菜应助研友_8KX15L采纳,获得10
8秒前
dasdsa发布了新的文献求助10
8秒前
阿标完成签到,获得积分10
9秒前
Yolo发布了新的文献求助10
10秒前
荼蘼完成签到,获得积分10
10秒前
whisper完成签到,获得积分10
10秒前
YOLO完成签到 ,获得积分10
10秒前
沙河口大长硬完成签到,获得积分10
10秒前
11秒前
QI完成签到,获得积分10
11秒前
灵巧晓山完成签到,获得积分10
11秒前
ivy0425完成签到,获得积分10
12秒前
孤独乐瑶发布了新的文献求助10
12秒前
DQ发布了新的文献求助10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167375
求助须知:如何正确求助?哪些是违规求助? 2818893
关于积分的说明 7923236
捐赠科研通 2478710
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443