High-Performance W-Doped Bi0.5Sb1.5Te3 Flexible Thermoelectric Films and Generators

材料科学 热电效应 兴奋剂 薄膜 热电材料 塞贝克系数 电子迁移率 溅射沉积 光电子学 工作职能 热电发电机 纳米技术 溅射 热导率 复合材料 热力学 图层(电子) 物理
作者
Zerui Liu,Yulin Zhang,Feng-ning Xue,Ting Liu,Xiaokang Ding,Yong Lu,Ji-Cai Zhang,Fu‐Jian Xu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (20): 26025-26033 被引量:2
标识
DOI:10.1021/acsami.4c00529
摘要

Bi–Sb–Te-based thermoelectric materials have the best room-temperature thermoelectric properties, but their inherent brittleness and rigidity limit their application in the wearable field. In this study, W-doped p-type Bi0.5Sb1.5Te3 (W-BST) thin films were prepared using magnetron sputtering on polyimide substrates to create thermoelectric generators (TEGs). Bending tests showed that the thin film has excellent flexibility and mechanical durability, meeting the flexible requirements of wearable devices. W doping can significantly increase the carrier concentration, Seebeck coefficient, and electrical conductivity of BST thin films. At 300 K, the power factor of the W-BST film is 2.25 times higher than that of the undoped film, reaching 13.75 μW cm–1 K–2. First-principles calculations showed that W doping introduces significant impurity peaks in the bandgap, in which W d electrons remarkably hybridize with the Sb and Te p electrons, leading to an improved electrical conductivity of BST films. Furthermore, W doping significantly reduces the work function of BST films, thereby improving the carrier mobility. A TEG module fabricated from four layers of W-BST thin films achieved a maximum output power density of 6.91 mW cm–2 at a temperature difference of 60 K. Application tests showed that the flexible TEG module could power a portable clock using the temperature difference between body temperature and room temperature. At a medium temperature of 439 K, the assembled TEG module can provide a stable output voltage of 1.51 V to power a LED. This study demonstrates the feasibility of combining inorganic thermoelectric materials with flexible substrates to create high-performance flexible TEGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助dong采纳,获得10
1秒前
1秒前
1秒前
zz完成签到 ,获得积分10
1秒前
1秒前
223344完成签到,获得积分10
2秒前
欧阳半仙完成签到,获得积分10
2秒前
3秒前
bkagyin应助xm采纳,获得10
3秒前
赘婿应助gwh68964402gwh采纳,获得10
3秒前
我瞎蒙完成签到,获得积分10
4秒前
yzz发布了新的文献求助10
4秒前
赖道之发布了新的文献求助10
5秒前
熊猫完成签到,获得积分10
5秒前
Yvonne发布了新的文献求助10
6秒前
NANA发布了新的文献求助10
6秒前
yoyocici1505完成签到,获得积分10
6秒前
ding应助平常的擎宇采纳,获得30
7秒前
於松应助Chang采纳,获得20
7秒前
刻苦问柳完成签到,获得积分10
7秒前
呆萌小鸭子完成签到 ,获得积分10
7秒前
白白完成签到,获得积分10
7秒前
Lxy完成签到,获得积分10
7秒前
8秒前
橙子味完成签到 ,获得积分10
8秒前
9秒前
9秒前
dong完成签到,获得积分10
9秒前
10秒前
科研通AI5应助刘芸芸采纳,获得10
11秒前
baijiayi完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
song发布了新的文献求助10
12秒前
LEMON发布了新的文献求助10
13秒前
13秒前
Aha完成签到 ,获得积分10
13秒前
13秒前
乐乐应助狂野世立采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762