Evaluating GPT-V4 (GPT-4 with Vision) on Detection of Radiologic Findings on Chest Radiographs

医学 射线照相术 放射科 核医学
作者
Yiliang Zhou,Hanley Ong,Patrick Kennedy,Carol C. Wu,Jacob Kazam,Keith Hentel,Adam E. Flanders,George Shih,Yifan Peng,Sarah Atzen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:27
标识
DOI:10.1148/radiol.233270
摘要

Background Generating radiologic findings from chest radiographs is pivotal in medical image analysis. The emergence of OpenAI's generative pretrained transformer, GPT-4 with vision (GPT-4V), has opened new perspectives on the potential for automated image-text pair generation. However, the application of GPT-4V to real-world chest radiography is yet to be thoroughly examined. Purpose To investigate the capability of GPT-4V to generate radiologic findings from real-world chest radiographs. Materials and Methods In this retrospective study, 100 chest radiographs with free-text radiology reports were annotated by a cohort of radiologists, two attending physicians and three residents, to establish a reference standard. Of 100 chest radiographs, 50 were randomly selected from the National Institutes of Health (NIH) chest radiographic data set, and 50 were randomly selected from the Medical Imaging and Data Resource Center (MIDRC). The performance of GPT-4V at detecting imaging findings from each chest radiograph was assessed in the zero-shot setting (where it operates without prior examples) and few-shot setting (where it operates with two examples). Its outcomes were compared with the reference standard with regards to clinical conditions and their corresponding codes in the International Statistical Classification of Diseases, Tenth Revision (ICD-10), including the anatomic location (hereafter, laterality). Results In the zero-shot setting, in the task of detecting ICD-10 codes alone, GPT-4V attained an average positive predictive value (PPV) of 12.3%, average true-positive rate (TPR) of 5.8%, and average F1 score of 7.3% on the NIH data set, and an average PPV of 25.0%, average TPR of 16.8%, and average F1 score of 18.2% on the MIDRC data set. When both the ICD-10 codes and their corresponding laterality were considered, GPT-4V produced an average PPV of 7.8%, average TPR of 3.5%, and average F1 score of 4.5% on the NIH data set, and an average PPV of 10.9%, average TPR of 4.9%, and average F1 score of 6.4% on the MIDRC data set. With few-shot learning, GPT-4V showed improved performance on both data sets. When contrasting zero-shot and few-shot learning, there were improved average TPRs and F1 scores in the few-shot setting, but there was not a substantial increase in the average PPV. Conclusion Although GPT-4V has shown promise in understanding natural images, it had limited effectiveness in interpreting real-world chest radiographs. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
DXXX发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
桐桐应助YuLu采纳,获得10
1秒前
qyj发布了新的文献求助10
2秒前
2秒前
领导范儿应助wq采纳,获得10
2秒前
希望天下0贩的0应助星星采纳,获得30
2秒前
玩命的猕猴桃完成签到,获得积分10
2秒前
3秒前
搜集达人应助Xiaojiu采纳,获得10
3秒前
4秒前
4秒前
好好学习发布了新的文献求助10
5秒前
fyl发布了新的文献求助10
5秒前
wy.he应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
6秒前
河马发布了新的文献求助10
6秒前
望远山完成签到,获得积分10
6秒前
何1发布了新的文献求助10
6秒前
6秒前
wuwu发布了新的文献求助10
6秒前
大翟发布了新的文献求助10
7秒前
小蘑菇应助快乐科研采纳,获得10
7秒前
7秒前
dadadaxia发布了新的文献求助10
7秒前
东郭寄灵发布了新的文献求助10
7秒前
7秒前
彭于晏应助biomichael采纳,获得10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836