亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating GPT-V4 (GPT-4 with Vision) on Detection of Radiologic Findings on Chest Radiographs

医学 射线照相术 放射科 核医学
作者
Yiliang Zhou,Hanley Ong,Patrick Kennedy,Carol C. Wu,Jacob Kazam,Keith Hentel,Adam E. Flanders,George Shih,Yifan Peng,Sarah Atzen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:16
标识
DOI:10.1148/radiol.233270
摘要

Background Generating radiologic findings from chest radiographs is pivotal in medical image analysis. The emergence of OpenAI's generative pretrained transformer, GPT-4 with vision (GPT-4V), has opened new perspectives on the potential for automated image-text pair generation. However, the application of GPT-4V to real-world chest radiography is yet to be thoroughly examined. Purpose To investigate the capability of GPT-4V to generate radiologic findings from real-world chest radiographs. Materials and Methods In this retrospective study, 100 chest radiographs with free-text radiology reports were annotated by a cohort of radiologists, two attending physicians and three residents, to establish a reference standard. Of 100 chest radiographs, 50 were randomly selected from the National Institutes of Health (NIH) chest radiographic data set, and 50 were randomly selected from the Medical Imaging and Data Resource Center (MIDRC). The performance of GPT-4V at detecting imaging findings from each chest radiograph was assessed in the zero-shot setting (where it operates without prior examples) and few-shot setting (where it operates with two examples). Its outcomes were compared with the reference standard with regards to clinical conditions and their corresponding codes in the International Statistical Classification of Diseases, Tenth Revision (ICD-10), including the anatomic location (hereafter, laterality). Results In the zero-shot setting, in the task of detecting ICD-10 codes alone, GPT-4V attained an average positive predictive value (PPV) of 12.3%, average true-positive rate (TPR) of 5.8%, and average F1 score of 7.3% on the NIH data set, and an average PPV of 25.0%, average TPR of 16.8%, and average F1 score of 18.2% on the MIDRC data set. When both the ICD-10 codes and their corresponding laterality were considered, GPT-4V produced an average PPV of 7.8%, average TPR of 3.5%, and average F1 score of 4.5% on the NIH data set, and an average PPV of 10.9%, average TPR of 4.9%, and average F1 score of 6.4% on the MIDRC data set. With few-shot learning, GPT-4V showed improved performance on both data sets. When contrasting zero-shot and few-shot learning, there were improved average TPRs and F1 scores in the few-shot setting, but there was not a substantial increase in the average PPV. Conclusion Although GPT-4V has shown promise in understanding natural images, it had limited effectiveness in interpreting real-world chest radiographs. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLQ发布了新的文献求助10
1秒前
2秒前
调研昵称发布了新的文献求助10
3秒前
4秒前
娜行完成签到 ,获得积分10
6秒前
7秒前
dental发布了新的文献求助10
9秒前
小王同学完成签到 ,获得积分10
9秒前
水上汀州完成签到 ,获得积分10
10秒前
钰姝发布了新的文献求助10
14秒前
传奇3应助LLQ采纳,获得10
14秒前
16秒前
在水一方应助dental采纳,获得10
17秒前
希望天下0贩的0应助dental采纳,获得10
17秒前
布同完成签到,获得积分10
17秒前
疯狂喵完成签到 ,获得积分10
20秒前
1号完成签到,获得积分10
22秒前
30秒前
37秒前
钰姝完成签到,获得积分20
37秒前
呼呼呼完成签到 ,获得积分10
44秒前
往事小刘完成签到,获得积分10
45秒前
48秒前
图书馆碎碎念的葱花完成签到,获得积分10
52秒前
季1发布了新的文献求助10
53秒前
58秒前
野性的柠檬完成签到,获得积分10
1分钟前
立青发布了新的文献求助10
1分钟前
景辣条应助123采纳,获得10
1分钟前
科研通AI2S应助风筝不断线采纳,获得10
1分钟前
1分钟前
CodeCraft应助古德豹采纳,获得10
1分钟前
白艳涛完成签到,获得积分10
1分钟前
choyng完成签到,获得积分10
1分钟前
1分钟前
1分钟前
dental发布了新的文献求助30
1分钟前
三千光影完成签到 ,获得积分10
1分钟前
古德豹发布了新的文献求助10
1分钟前
DrNant完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146697
求助须知:如何正确求助?哪些是违规求助? 2798001
关于积分的说明 7826354
捐赠科研通 2454503
什么是DOI,文献DOI怎么找? 1306289
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522