Evaluating GPT-V4 (GPT-4 with Vision) on Detection of Radiologic Findings on Chest Radiographs

医学 射线照相术 放射科 核医学
作者
Yiliang Zhou,Hanley Ong,Patrick Kennedy,Carol C. Wu,Jacob Kazam,Keith Hentel,Adam E. Flanders,George Shih,Yifan Peng,Sarah Atzen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:27
标识
DOI:10.1148/radiol.233270
摘要

Background Generating radiologic findings from chest radiographs is pivotal in medical image analysis. The emergence of OpenAI's generative pretrained transformer, GPT-4 with vision (GPT-4V), has opened new perspectives on the potential for automated image-text pair generation. However, the application of GPT-4V to real-world chest radiography is yet to be thoroughly examined. Purpose To investigate the capability of GPT-4V to generate radiologic findings from real-world chest radiographs. Materials and Methods In this retrospective study, 100 chest radiographs with free-text radiology reports were annotated by a cohort of radiologists, two attending physicians and three residents, to establish a reference standard. Of 100 chest radiographs, 50 were randomly selected from the National Institutes of Health (NIH) chest radiographic data set, and 50 were randomly selected from the Medical Imaging and Data Resource Center (MIDRC). The performance of GPT-4V at detecting imaging findings from each chest radiograph was assessed in the zero-shot setting (where it operates without prior examples) and few-shot setting (where it operates with two examples). Its outcomes were compared with the reference standard with regards to clinical conditions and their corresponding codes in the International Statistical Classification of Diseases, Tenth Revision (ICD-10), including the anatomic location (hereafter, laterality). Results In the zero-shot setting, in the task of detecting ICD-10 codes alone, GPT-4V attained an average positive predictive value (PPV) of 12.3%, average true-positive rate (TPR) of 5.8%, and average F1 score of 7.3% on the NIH data set, and an average PPV of 25.0%, average TPR of 16.8%, and average F1 score of 18.2% on the MIDRC data set. When both the ICD-10 codes and their corresponding laterality were considered, GPT-4V produced an average PPV of 7.8%, average TPR of 3.5%, and average F1 score of 4.5% on the NIH data set, and an average PPV of 10.9%, average TPR of 4.9%, and average F1 score of 6.4% on the MIDRC data set. With few-shot learning, GPT-4V showed improved performance on both data sets. When contrasting zero-shot and few-shot learning, there were improved average TPRs and F1 scores in the few-shot setting, but there was not a substantial increase in the average PPV. Conclusion Although GPT-4V has shown promise in understanding natural images, it had limited effectiveness in interpreting real-world chest radiographs. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鑫炜赵完成签到,获得积分10
2秒前
乘风破浪完成签到 ,获得积分0
3秒前
充电宝应助游畅采纳,获得10
7秒前
文献荒完成签到,获得积分10
7秒前
guagua完成签到 ,获得积分10
9秒前
11秒前
科研通AI6应助wlh123采纳,获得10
11秒前
13秒前
14秒前
充电宝应助桂棹兮兰桨采纳,获得10
15秒前
15秒前
聪明的破茧完成签到,获得积分10
15秒前
希望天下0贩的0应助charint采纳,获得10
16秒前
Hexagram完成签到 ,获得积分10
18秒前
fuws完成签到 ,获得积分10
19秒前
刻苦惜萍发布了新的文献求助10
19秒前
852应助欣慰立轩采纳,获得10
19秒前
轻爱完成签到,获得积分10
19秒前
安小云发布了新的文献求助10
20秒前
初遇之时最暖完成签到,获得积分10
21秒前
橘子海完成签到 ,获得积分10
22秒前
贪玩的醉柳完成签到,获得积分10
23秒前
上官若男应助刻苦惜萍采纳,获得10
25秒前
航某人完成签到,获得积分10
25秒前
凶狠的储完成签到,获得积分10
26秒前
工水发布了新的文献求助10
28秒前
四斤瓜完成签到 ,获得积分10
29秒前
yandemengxiang完成签到,获得积分10
29秒前
罗静完成签到,获得积分10
29秒前
CaoYi完成签到 ,获得积分10
29秒前
Mic给愉快的万声的求助进行了留言
31秒前
壹壹完成签到 ,获得积分10
32秒前
爱读文献的小张完成签到,获得积分10
35秒前
安小云完成签到,获得积分20
35秒前
明钟达完成签到,获得积分10
36秒前
面包树完成签到,获得积分10
38秒前
38秒前
大个应助Dirsch采纳,获得10
39秒前
xing完成签到,获得积分10
41秒前
然463完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282