Research on online anomaly detection methods for bearing degradation

降级(电信) 异常检测 方位(导航) 计算机科学 异常(物理) 数据挖掘 人工智能 物理 电信 凝聚态物理
作者
Shuowei Jin,Hongchao Xu,Zhenlin Lu,Aiyun Yan,Yuhang Zhao,Huan He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085003-085003 被引量:2
标识
DOI:10.1088/1361-6501/ad4621
摘要

Abstract In industrial applications, rolling bearings operate under conditions of high precision and high speed, and their physical and mechanical characteristics change with the increase in operating time. Traditional diagnostic methods struggle to adapt well to the changing characteristics of bearings for online anomaly detection. Therefore, this research proposes an online anomaly detection method for rolling bearings based on time-density-weighted incremental support vector data description (TISVDD). A classification strategy is proposed to prevent samples misclassification in the updating process. The Detection Boundary is established based on SVDD decision boundary to enhance the recognition of abnormal samples in the process of model updating. A dual-screening mechanism update strategy for support vectors is proposed. It involves establishing a preliminary screening mechanism based on the Elimination Boundary. On this basis, an in-depth screening mechanism based on time density weight is introduced by considering spatiotemporal characteristics of samples, enhancing the real-time performance of online anomaly detection for bearings. Building upon the fused dual-boundary SVDD, a TISVDD framework for online anomaly detection is proposed, enabling the detection model to dynamically update in response to data changes over time. To validate the effectiveness of the proposed method, experiments were conducted using the XJTU-SY bearing dataset and real-time datasets collected on an online hardware platform. The results demonstrate the effectiveness and superiority of the method in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熠旅完成签到,获得积分10
1秒前
zone54188发布了新的文献求助10
1秒前
1秒前
KP关闭了KP文献求助
1秒前
淡然的茹嫣完成签到,获得积分10
1秒前
acfun发布了新的文献求助10
1秒前
LHW完成签到,获得积分10
2秒前
开心孤容完成签到,获得积分10
2秒前
lixiao完成签到,获得积分10
2秒前
勤恳如雪关注了科研通微信公众号
2秒前
郑成灿发布了新的文献求助10
2秒前
2秒前
背影依旧那么帅完成签到,获得积分10
3秒前
zhouzehua1003完成签到,获得积分10
3秒前
端庄的奇异果完成签到 ,获得积分10
3秒前
Stephanie发布了新的文献求助30
3秒前
3秒前
脑洞疼应助想不出新昵称采纳,获得10
4秒前
5秒前
5秒前
去玩儿发布了新的文献求助10
5秒前
杨震发布了新的文献求助10
5秒前
科研通AI6应助chenping_an采纳,获得10
5秒前
大模型应助紫文采纳,获得10
5秒前
J-R发布了新的文献求助10
5秒前
噔噔蹬发布了新的文献求助10
5秒前
6秒前
萧瑟处完成签到,获得积分10
6秒前
科研通AI6应助精明丹翠采纳,获得10
7秒前
7秒前
嘿嘿发布了新的文献求助10
7秒前
852应助sss采纳,获得10
8秒前
8秒前
GGboooond发布了新的文献求助10
8秒前
平常囧完成签到,获得积分10
8秒前
8秒前
轩辕完成签到 ,获得积分10
8秒前
赘婿应助ranhao采纳,获得10
8秒前
8秒前
雪茶发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978