Research on online anomaly detection methods for bearing degradation

降级(电信) 异常检测 方位(导航) 计算机科学 异常(物理) 数据挖掘 人工智能 物理 电信 凝聚态物理
作者
Shuowei Jin,Hongchao Xu,Zhenlin Lu,Aiyun Yan,Yuhang Zhao,Huan He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085003-085003 被引量:2
标识
DOI:10.1088/1361-6501/ad4621
摘要

Abstract In industrial applications, rolling bearings operate under conditions of high precision and high speed, and their physical and mechanical characteristics change with the increase in operating time. Traditional diagnostic methods struggle to adapt well to the changing characteristics of bearings for online anomaly detection. Therefore, this research proposes an online anomaly detection method for rolling bearings based on time-density-weighted incremental support vector data description (TISVDD). A classification strategy is proposed to prevent samples misclassification in the updating process. The Detection Boundary is established based on SVDD decision boundary to enhance the recognition of abnormal samples in the process of model updating. A dual-screening mechanism update strategy for support vectors is proposed. It involves establishing a preliminary screening mechanism based on the Elimination Boundary. On this basis, an in-depth screening mechanism based on time density weight is introduced by considering spatiotemporal characteristics of samples, enhancing the real-time performance of online anomaly detection for bearings. Building upon the fused dual-boundary SVDD, a TISVDD framework for online anomaly detection is proposed, enabling the detection model to dynamically update in response to data changes over time. To validate the effectiveness of the proposed method, experiments were conducted using the XJTU-SY bearing dataset and real-time datasets collected on an online hardware platform. The results demonstrate the effectiveness and superiority of the method in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
thchiang发布了新的文献求助10
1秒前
1秒前
科目三应助chall采纳,获得10
2秒前
自由的梦蕊完成签到,获得积分10
2秒前
cosy完成签到,获得积分10
3秒前
ee发布了新的文献求助10
3秒前
4秒前
笨笨如之完成签到 ,获得积分10
5秒前
5秒前
高访蕊发布了新的文献求助10
5秒前
5秒前
6秒前
乐乐应助啦啦啦采纳,获得10
6秒前
6秒前
能干储发布了新的文献求助10
6秒前
举人烧烤发布了新的文献求助10
8秒前
cosy发布了新的文献求助10
9秒前
9秒前
科研通AI6应助粗心的从露采纳,获得10
9秒前
10秒前
脑洞疼应助emoji采纳,获得10
10秒前
傲娇剑心完成签到,获得积分20
10秒前
qing_li完成签到,获得积分10
11秒前
感动的铁身关注了科研通微信公众号
12秒前
Satan完成签到,获得积分10
12秒前
14秒前
王钰绮发布了新的文献求助10
14秒前
王欧尼发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
白木子衬完成签到,获得积分10
16秒前
情怀应助刘卿婷采纳,获得10
16秒前
九月完成签到,获得积分10
18秒前
19秒前
简单的可乐完成签到,获得积分10
19秒前
科研通AI6应助哈no采纳,获得10
20秒前
完美世界应助YE采纳,获得10
20秒前
wxn发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707