Research on online anomaly detection methods for bearing degradation

降级(电信) 异常检测 方位(导航) 计算机科学 异常(物理) 数据挖掘 人工智能 物理 电信 凝聚态物理
作者
Shuowei Jin,Hongchao Xu,Zhenlin Lu,Aiyun Yan,Yuhang Zhao,Huan He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085003-085003 被引量:2
标识
DOI:10.1088/1361-6501/ad4621
摘要

Abstract In industrial applications, rolling bearings operate under conditions of high precision and high speed, and their physical and mechanical characteristics change with the increase in operating time. Traditional diagnostic methods struggle to adapt well to the changing characteristics of bearings for online anomaly detection. Therefore, this research proposes an online anomaly detection method for rolling bearings based on time-density-weighted incremental support vector data description (TISVDD). A classification strategy is proposed to prevent samples misclassification in the updating process. The Detection Boundary is established based on SVDD decision boundary to enhance the recognition of abnormal samples in the process of model updating. A dual-screening mechanism update strategy for support vectors is proposed. It involves establishing a preliminary screening mechanism based on the Elimination Boundary. On this basis, an in-depth screening mechanism based on time density weight is introduced by considering spatiotemporal characteristics of samples, enhancing the real-time performance of online anomaly detection for bearings. Building upon the fused dual-boundary SVDD, a TISVDD framework for online anomaly detection is proposed, enabling the detection model to dynamically update in response to data changes over time. To validate the effectiveness of the proposed method, experiments were conducted using the XJTU-SY bearing dataset and real-time datasets collected on an online hardware platform. The results demonstrate the effectiveness and superiority of the method in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助ytnju采纳,获得10
刚刚
果子梨啊完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
青柠发布了新的文献求助10
3秒前
jy完成签到,获得积分10
3秒前
WX完成签到,获得积分10
3秒前
魏凯源完成签到,获得积分10
4秒前
761997580完成签到 ,获得积分10
4秒前
果子梨啊发布了新的文献求助30
4秒前
牛乃唐发布了新的文献求助10
4秒前
xc124完成签到,获得积分10
5秒前
6秒前
完美世界应助橙子雨采纳,获得10
6秒前
星辰大海应助老大黎明采纳,获得10
6秒前
dawn发布了新的文献求助10
7秒前
Sherry完成签到,获得积分10
9秒前
李健的小迷弟应助皮飞111采纳,获得10
9秒前
ytt完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
维奈克拉举报执着的忻求助涉嫌违规
12秒前
亦亦完成签到 ,获得积分10
13秒前
LD完成签到 ,获得积分10
13秒前
田様应助fffff采纳,获得10
13秒前
维奈克拉应助又活了一天采纳,获得10
14秒前
1927592156发布了新的文献求助10
14秒前
爱听歌的机器猫完成签到,获得积分10
14秒前
15秒前
赘婿应助Galateor采纳,获得10
15秒前
16秒前
16秒前
JamesPei应助司月五采纳,获得10
17秒前
Owen应助杨小豆采纳,获得10
17秒前
18秒前
19秒前
21秒前
yy发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572770
求助须知:如何正确求助?哪些是违规求助? 4658712
关于积分的说明 14722778
捐赠科研通 4598617
什么是DOI,文献DOI怎么找? 2523891
邀请新用户注册赠送积分活动 1494593
关于科研通互助平台的介绍 1464622