亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on online anomaly detection methods for bearing degradation

降级(电信) 异常检测 方位(导航) 计算机科学 异常(物理) 数据挖掘 人工智能 物理 电信 凝聚态物理
作者
Shuowei Jin,Hongchao Xu,Zhenlin Lu,Aiyun Yan,Yuhang Zhao,Huan He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085003-085003 被引量:2
标识
DOI:10.1088/1361-6501/ad4621
摘要

Abstract In industrial applications, rolling bearings operate under conditions of high precision and high speed, and their physical and mechanical characteristics change with the increase in operating time. Traditional diagnostic methods struggle to adapt well to the changing characteristics of bearings for online anomaly detection. Therefore, this research proposes an online anomaly detection method for rolling bearings based on time-density-weighted incremental support vector data description (TISVDD). A classification strategy is proposed to prevent samples misclassification in the updating process. The Detection Boundary is established based on SVDD decision boundary to enhance the recognition of abnormal samples in the process of model updating. A dual-screening mechanism update strategy for support vectors is proposed. It involves establishing a preliminary screening mechanism based on the Elimination Boundary. On this basis, an in-depth screening mechanism based on time density weight is introduced by considering spatiotemporal characteristics of samples, enhancing the real-time performance of online anomaly detection for bearings. Building upon the fused dual-boundary SVDD, a TISVDD framework for online anomaly detection is proposed, enabling the detection model to dynamically update in response to data changes over time. To validate the effectiveness of the proposed method, experiments were conducted using the XJTU-SY bearing dataset and real-time datasets collected on an online hardware platform. The results demonstrate the effectiveness and superiority of the method in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
雾里发布了新的文献求助10
7秒前
16秒前
何何发布了新的文献求助10
19秒前
Criminology34应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
27秒前
28秒前
fcycukvujblk发布了新的文献求助10
31秒前
彭蓬发布了新的文献求助10
31秒前
48秒前
彭蓬完成签到,获得积分10
52秒前
Omni发布了新的文献求助10
1分钟前
Jasper应助Bin采纳,获得10
1分钟前
安静一曲完成签到 ,获得积分10
1分钟前
Akim应助janice采纳,获得10
1分钟前
剁椒鱼头完成签到 ,获得积分10
2分钟前
平淡梦寒完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
wq发布了新的文献求助10
2分钟前
熬夜波比应助江经纬采纳,获得10
2分钟前
orixero应助wq采纳,获得10
2分钟前
3分钟前
善学以致用应助DouBo采纳,获得10
3分钟前
在水一方应助雾里采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Lucas应助鳄鱼不做饿梦采纳,获得10
3分钟前
3分钟前
DouBo发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4859865
关于积分的说明 15107409
捐赠科研通 4822762
什么是DOI,文献DOI怎么找? 2581727
邀请新用户注册赠送积分活动 1535924
关于科研通互助平台的介绍 1494124