Agricultural object detection with You Only Look Once (YOLO) Algorithm: A bibliometric and systematic literature review

农业 对象(语法) 计算机科学 算法 人工智能 地理 考古
作者
Chetan Badgujar,Alwin Poulose,Hao Gan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:223: 109090-109090 被引量:19
标识
DOI:10.1016/j.compag.2024.109090
摘要

Vision is a major component in several digital technologies and tools used in agriculture. Object detection plays a pivotal role in digital farming by automating the task of detecting, identifying, and localization of various objects in large-scale agrarian landscapes. The single-stage detection algorithm, You Only Look Once (YOLO), has gained popularity in agriculture in a relatively short span due to its state-of-the-art performance in terms of accuracy, speed, and network size. YOLO offers real-time detection performance with good accuracy and is implemented in various agricultural tasks, including monitoring, surveillance, sensing, automation, and robotics operations. The research and application of YOLO in agriculture are accelerating at a tremendous speed but are fragmented and multidisciplinary in nature. Moreover, the performance characteristics (i.e., accuracy, speed, computation) of the object detector influence the rate of technology implementation and adoption in agriculture. Therefore, this study aimed to collect extensive literature to document and critically evaluate the advances and application of YOLO for agricultural object recognition tasks. First, we conducted a bibliometric review of 257 selected articles to understand the scholarly landscape (i.e., research trends, evolution, global hotspots, and gaps) of YOLO in the broad agricultural domain. Secondly, we conducted a systematic literature review on 30 selected articles to identify current knowledge, critical gaps, and modifications in YOLO for specific agricultural tasks. The study critically assessed and summarized the information on YOLO's end-to-end learning approach, including data acquisition, processing, network modification, integration, and deployment. We also discussed task-specific YOLO algorithm modification and integration to meet the agricultural object or environment-specific challenges. In general, YOLO-integrated digital tools and technologies showed the potential for real-time, automated monitoring, surveillance, and object handling to reduce labor, production cost, and environmental impact while maximizing resource efficiency. The study provides detailed documentation and significantly advances the existing knowledge on applying YOLO in agriculture, which can greatly benefit the scientific community. The results of this study open the door for implementing YOLO-based solutions in practical agricultural scenarios and add to the expanding corpus of information on computer vision applications in agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的乘风完成签到 ,获得积分10
1秒前
CipherSage应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
6秒前
byyyy完成签到,获得积分10
7秒前
薰硝壤应助sunsaint采纳,获得10
7秒前
10秒前
汪小杰完成签到,获得积分10
11秒前
666完成签到,获得积分20
12秒前
14秒前
14秒前
14秒前
困敦发布了新的文献求助10
15秒前
小熊完成签到,获得积分10
16秒前
16秒前
Lili发布了新的文献求助10
18秒前
Yan发布了新的文献求助10
19秒前
暖阳发布了新的文献求助10
20秒前
24秒前
稳重的若雁应助Yan采纳,获得10
28秒前
C洛7完成签到,获得积分10
28秒前
大个应助huangnvshi采纳,获得10
31秒前
wyq完成签到,获得积分10
32秒前
JS完成签到,获得积分10
32秒前
wangyun完成签到,获得积分10
36秒前
37秒前
爆米花应助简单奎采纳,获得10
40秒前
tianxiadu发布了新的文献求助30
41秒前
42秒前
42秒前
susu完成签到 ,获得积分10
43秒前
45秒前
陈陈完成签到 ,获得积分10
45秒前
薰硝壤应助贪玩的元彤采纳,获得200
46秒前
46秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237