Contextualized and Personalized Math Word Problem Generation in Authentic Contexts Using Generative Pre-trained Transformer and Its Influences on Geometry Learning

语境化 个性化 计算机科学 背景(考古学) 感知 生成语法 学习风格 数学教育 多媒体 人工智能 人机交互 数学 心理学 万维网 古生物学 神经科学 生物 程序设计语言 口译(哲学)
作者
Ika Qutsiati Utami,Wu‐Yuin Hwang,Uun Hariyanti
出处
期刊:Journal of Educational Computing Research [SAGE Publishing]
卷期号:62 (6): 1604-1639 被引量:1
标识
DOI:10.1177/07356331241249225
摘要

Recently, automatic question generation (AQG) has been researched extensively for educational purposes. Existing approaches generally lack relevant information on the authentic context and problem diversity with various difficulty levels, so we proposed a new AQG system for generating contextualized and personalized mathematic word problems (MWP) in authentic contexts using the Generative Pre-trained Transformers (GPT). Our proposed system comprises (1) authentic contextual information acquisition through image recognition by TensorFlow and augmented reality (AR) measurement by AR Core, (2) a personalized mechanism based on instructional prompts to generate three different difficulty levels for learners’ different needs, and (3) MWP generation through GPT with authentic contextual information and personalized needs. We conducted a quasi-experiment with the participation of 52 students to evaluate the effectiveness of the proposed system on geometry learning performance. Further, the learning behaviors were analyzed in the aspects of authentic context, mathematics, and reflective behavior. The findings showed better results in geometry learning performances from students who learned with contextualized and personalized MWPs than those who were taught without contextualization and personalization on MWPs. Moreover, it was found that student’s ability to comprehend the practical situation or scenario presented in a problem (problem context understanding) and students’ ability to recognize relevant information from the problem context (identifying contextual information) significantly improved their learning performance. Moreover, students’ ability to apply math concepts and solve medium-level MWP also contributes to the improvement of learning performance. Meanwhile, learners showed positive perceptions toward the proposed system in facilitating geometry learning. Therefore, it is useful to promote an authentic context setting for mathematical problem-solving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chen完成签到 ,获得积分10
2秒前
2秒前
小小富应助lkk采纳,获得10
3秒前
种花兔完成签到,获得积分10
4秒前
理理完成签到,获得积分10
4秒前
15327432191完成签到 ,获得积分10
4秒前
5秒前
曲奇发布了新的文献求助10
6秒前
6秒前
JFP发布了新的文献求助10
6秒前
6秒前
Www发布了新的文献求助10
7秒前
ED应助理理采纳,获得10
8秒前
感动蓝发布了新的文献求助10
10秒前
yinan完成签到,获得积分10
11秒前
皮皮完成签到 ,获得积分10
12秒前
shencheng完成签到,获得积分10
12秒前
我是老大应助CVI采纳,获得10
12秒前
完美世界应助frl采纳,获得10
14秒前
15秒前
雨天慢行完成签到 ,获得积分10
15秒前
17秒前
袁莱发布了新的文献求助10
17秒前
小二郎应助moon采纳,获得10
18秒前
感动蓝完成签到,获得积分10
18秒前
18秒前
饱满南松发布了新的文献求助10
20秒前
小敏哼完成签到,获得积分10
20秒前
ygg完成签到,获得积分10
21秒前
杜兰特完成签到,获得积分10
22秒前
喵喵发布了新的文献求助10
24秒前
科研通AI2S应助1111采纳,获得10
24秒前
十三完成签到 ,获得积分10
25秒前
香蕉觅云应助饱满南松采纳,获得10
25秒前
25秒前
酷波er应助夜雨潇潇采纳,获得10
27秒前
27秒前
小吃货完成签到,获得积分10
27秒前
武傲翔发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609