Contextualized and Personalized Math Word Problem Generation in Authentic Contexts Using Generative Pre-trained Transformer and Its Influences on Geometry Learning

语境化 个性化 计算机科学 背景(考古学) 感知 生成语法 学习风格 数学教育 多媒体 人工智能 人机交互 数学 心理学 万维网 古生物学 神经科学 口译(哲学) 生物 程序设计语言
作者
Ika Qutsiati Utami,Wu‐Yuin Hwang,Uun Hariyanti
出处
期刊:Journal of Educational Computing Research [SAGE]
标识
DOI:10.1177/07356331241249225
摘要

Recently, automatic question generation (AQG) has been researched extensively for educational purposes. Existing approaches generally lack relevant information on the authentic context and problem diversity with various difficulty levels, so we proposed a new AQG system for generating contextualized and personalized mathematic word problems (MWP) in authentic contexts using the Generative Pre-trained Transformers (GPT). Our proposed system comprises (1) authentic contextual information acquisition through image recognition by TensorFlow and augmented reality (AR) measurement by AR Core, (2) a personalized mechanism based on instructional prompts to generate three different difficulty levels for learners’ different needs, and (3) MWP generation through GPT with authentic contextual information and personalized needs. We conducted a quasi-experiment with the participation of 52 students to evaluate the effectiveness of the proposed system on geometry learning performance. Further, the learning behaviors were analyzed in the aspects of authentic context, mathematics, and reflective behavior. The findings showed better results in geometry learning performances from students who learned with contextualized and personalized MWPs than those who were taught without contextualization and personalization on MWPs. Moreover, it was found that student’s ability to comprehend the practical situation or scenario presented in a problem (problem context understanding) and students’ ability to recognize relevant information from the problem context (identifying contextual information) significantly improved their learning performance. Moreover, students’ ability to apply math concepts and solve medium-level MWP also contributes to the improvement of learning performance. Meanwhile, learners showed positive perceptions toward the proposed system in facilitating geometry learning. Therefore, it is useful to promote an authentic context setting for mathematical problem-solving.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上下发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
jinqihui完成签到,获得积分10
4秒前
专注俊驰完成签到,获得积分10
4秒前
111关闭了111文献求助
4秒前
感动的小鸭子完成签到 ,获得积分10
4秒前
小二郎应助YYYN采纳,获得10
4秒前
饭团不吃鱼完成签到,获得积分10
5秒前
5秒前
加菲丰丰举报求助违规成功
6秒前
陈军举报求助违规成功
6秒前
丁丁丁举报求助违规成功
6秒前
6秒前
7秒前
HCXsir发布了新的文献求助10
8秒前
Orange应助里耶熊采纳,获得10
8秒前
专注俊驰发布了新的文献求助10
9秒前
传奇3应助滴哒采纳,获得10
10秒前
11秒前
11秒前
HCXsir完成签到,获得积分10
12秒前
汉堡包应助ZHD采纳,获得10
12秒前
13秒前
zjhzslq完成签到,获得积分10
13秒前
15秒前
阿修罗发布了新的文献求助10
15秒前
turui完成签到 ,获得积分10
17秒前
研友_VZG7GZ应助关关采纳,获得10
19秒前
里耶熊发布了新的文献求助10
20秒前
洁净的盼烟完成签到,获得积分10
21秒前
呆萌代桃完成签到,获得积分20
24秒前
24秒前
华仔应助开心的白昼采纳,获得10
25秒前
25秒前
26秒前
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120178
求助须知:如何正确求助?哪些是违规求助? 2770845
关于积分的说明 7705580
捐赠科研通 2426002
什么是DOI,文献DOI怎么找? 1288363
科研通“疑难数据库(出版商)”最低求助积分说明 620947
版权声明 600010