Performance analyses on the air cooling battery thermal management based on artificial neural networks

人工神经网络 电池(电) 电子设备和系统的热管理 空气冷却 热的 工程类 环境科学 汽车工程 机械工程 材料科学 气象学 计算机科学 人工智能 热力学 地理 功率(物理) 物理
作者
Yuan Xu,Jiapei Zhao,Jiaqi Chen,Houcheng Zhang,Zixiao Feng,Jinliang Yuan
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:252: 123567-123567 被引量:4
标识
DOI:10.1016/j.applthermaleng.2024.123567
摘要

Air cooling thermal management technology is a lightweight and cost-effective approach for managing heat in power battery packs for electric ships. However, it suffers from significant drawbacks such as poor temperature control and excessive noise generation. To address these challenges, this study proposes a method that combines fluid dynamics and artificial neural networks (ANNs) to optimize the thermal management and aeroacoustic performance of the air cooling battery thermal management system (BTMS) for marine power batteries. Initially, a thermal-flow coupled model and an acoustic model for the BTMS were developed to investigate the impact of system structural parameters (battery spacing d, and main channel inclination angle θ) and operating parameter (system inlet velocity v) on the thermal management performance indicators (maximum temperature Tmax, and maximum temperature difference ΔTmax) as well as the aeroacoustic performance indicator (overall sound pressure level, OSPL). Subsequently, a relationship between the system structural and operating parameters and performance indicators was established using the 50-layer Residual Network (ResNet-50) model, enabling accurate and rapid prediction of the system thermal management and aeroacoustic performance. Furthermore, by combining ResNet-50 with the evaluation method of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), this study successfully obtained the optimal system structure and operating parameters. The research indicates that keeping the remaining parameters constant, increasing the battery spacing results in higher maximum temperature and maximum temperature difference, while decreasing the overall system sound pressure level. Conversely, increasing the main channel inclination angle results in lower maximum temperature and maximum temperature difference, but higher overall system sound pressure level. In addition, increasing the inlet velocity will result in higher maximum temperature and maximum temperature difference, as well as higher overall system sound pressure level. The optimal case were found to be a main channel inclination angle θ = 3°, battery spacing d = 2 mm, and inlet velocity v = 10 m⋅s−1. Compared to the base case, the optimal case shows a maximum temperature reduction of 10.63 K, a maximum temperature difference reduction of 9.41 K, and an overall sound pressure level reduction of 4.6 dB. The prediction errors for these values are 0.08 %, 2.64 %, and 1.36 % respectively. This research demonstrates an effective and rapid approach based on fluid dynamics and ANNs in the design and optimization of BTMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0029完成签到,获得积分10
刚刚
Aki完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
3秒前
LXR完成签到,获得积分10
5秒前
thchiang发布了新的文献求助10
6秒前
李健应助北城采纳,获得10
6秒前
WDK发布了新的文献求助10
6秒前
7秒前
轻松的贞发布了新的文献求助10
7秒前
医学生Mavis完成签到,获得积分10
9秒前
nextconnie完成签到,获得积分10
9秒前
汉堡包应助yyj采纳,获得10
10秒前
zqh740发布了新的文献求助30
11秒前
12秒前
NexusExplorer应助pharmstudent采纳,获得10
13秒前
熊遇蜜完成签到,获得积分10
15秒前
panzer完成签到,获得积分10
16秒前
17秒前
lyt发布了新的文献求助10
18秒前
六月毕业关注了科研通微信公众号
19秒前
petrichor应助程程采纳,获得10
20秒前
圆儿完成签到 ,获得积分10
20秒前
潇洒的灵萱完成签到,获得积分10
20秒前
20秒前
20秒前
Toooo完成签到,获得积分10
21秒前
zqh740完成签到,获得积分10
21秒前
科研通AI5应助thchiang采纳,获得10
21秒前
lizzzzzz完成签到,获得积分10
22秒前
yyj发布了新的文献求助10
22秒前
请和我吃饭完成签到,获得积分10
23秒前
北城发布了新的文献求助10
24秒前
勤恳冰淇淋完成签到 ,获得积分10
25秒前
27秒前
27秒前
清晏完成签到,获得积分10
28秒前
曲书文完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824