Performance analyses on the air cooling battery thermal management based on artificial neural networks

人工神经网络 电池(电) 电子设备和系统的热管理 空气冷却 热的 工程类 环境科学 汽车工程 机械工程 材料科学 气象学 计算机科学 人工智能 热力学 地理 功率(物理) 物理
作者
Yuan Xu,Jiapei Zhao,Jiaqi Chen,Houcheng Zhang,Zixiao Feng,Jinliang Yuan
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:252: 123567-123567 被引量:4
标识
DOI:10.1016/j.applthermaleng.2024.123567
摘要

Air cooling thermal management technology is a lightweight and cost-effective approach for managing heat in power battery packs for electric ships. However, it suffers from significant drawbacks such as poor temperature control and excessive noise generation. To address these challenges, this study proposes a method that combines fluid dynamics and artificial neural networks (ANNs) to optimize the thermal management and aeroacoustic performance of the air cooling battery thermal management system (BTMS) for marine power batteries. Initially, a thermal-flow coupled model and an acoustic model for the BTMS were developed to investigate the impact of system structural parameters (battery spacing d, and main channel inclination angle θ) and operating parameter (system inlet velocity v) on the thermal management performance indicators (maximum temperature Tmax, and maximum temperature difference ΔTmax) as well as the aeroacoustic performance indicator (overall sound pressure level, OSPL). Subsequently, a relationship between the system structural and operating parameters and performance indicators was established using the 50-layer Residual Network (ResNet-50) model, enabling accurate and rapid prediction of the system thermal management and aeroacoustic performance. Furthermore, by combining ResNet-50 with the evaluation method of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), this study successfully obtained the optimal system structure and operating parameters. The research indicates that keeping the remaining parameters constant, increasing the battery spacing results in higher maximum temperature and maximum temperature difference, while decreasing the overall system sound pressure level. Conversely, increasing the main channel inclination angle results in lower maximum temperature and maximum temperature difference, but higher overall system sound pressure level. In addition, increasing the inlet velocity will result in higher maximum temperature and maximum temperature difference, as well as higher overall system sound pressure level. The optimal case were found to be a main channel inclination angle θ = 3°, battery spacing d = 2 mm, and inlet velocity v = 10 m⋅s−1. Compared to the base case, the optimal case shows a maximum temperature reduction of 10.63 K, a maximum temperature difference reduction of 9.41 K, and an overall sound pressure level reduction of 4.6 dB. The prediction errors for these values are 0.08 %, 2.64 %, and 1.36 % respectively. This research demonstrates an effective and rapid approach based on fluid dynamics and ANNs in the design and optimization of BTMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打喷嚏的猪给打喷嚏的猪的求助进行了留言
刚刚
简单初曼发布了新的文献求助10
1秒前
HopeStar发布了新的文献求助10
1秒前
王某人完成签到,获得积分10
2秒前
家嵩完成签到,获得积分10
2秒前
Lucas应助lu采纳,获得10
2秒前
阿卡宁完成签到,获得积分10
3秒前
3秒前
爱静静应助加菲丰丰采纳,获得10
3秒前
咿咿呀呀完成签到,获得积分10
4秒前
jiangjiang完成签到,获得积分10
4秒前
麻花精发布了新的文献求助10
4秒前
打打应助易槐采纳,获得10
5秒前
huhu发布了新的文献求助10
5秒前
羡雨0413完成签到,获得积分10
5秒前
大牛顿完成签到,获得积分10
5秒前
z_完成签到,获得积分10
6秒前
吴吴完成签到,获得积分10
6秒前
冰糖小葫芦完成签到,获得积分20
7秒前
manman完成签到,获得积分10
7秒前
Ava应助搞怪烨伟采纳,获得10
8秒前
nano完成签到 ,获得积分10
8秒前
8秒前
宁小满完成签到,获得积分10
9秒前
9秒前
小羊发布了新的文献求助10
9秒前
方圆学术完成签到,获得积分10
10秒前
JamesPei应助Li采纳,获得10
10秒前
无花果应助简单初曼采纳,获得10
11秒前
11秒前
11秒前
科研通AI2S应助blUe采纳,获得10
11秒前
好运完成签到 ,获得积分10
11秒前
only完成签到,获得积分20
11秒前
LXOYL发布了新的文献求助10
14秒前
14秒前
哈哈发布了新的文献求助10
14秒前
14秒前
14秒前
lzn发布了新的文献求助10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143406
求助须知:如何正确求助?哪些是违规求助? 2794708
关于积分的说明 7812043
捐赠科研通 2450840
什么是DOI,文献DOI怎么找? 1304134
科研通“疑难数据库(出版商)”最低求助积分说明 627179
版权声明 601386