Automatic Detection of Road Subsurface Distress via Curriculum Learning: Learn Like an Expert

探地雷达 人工智能 基本事实 机器学习 计算机科学 深度学习 噪音(视频) 雷达 算法 数据挖掘 电信 图像(数学)
作者
Guanghua Yue,Chenglong Liu,Yishun Li,Yuchuan Du,Qian Gao
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241248164
摘要

The application of deep learning algorithms for subsurface distress detection using ground penetrating radar (GPR) data has seen extensive utilization. However, a significant impediment arises because of the challenge in acquiring ground-truth subsurface distress samples. This scarcity of labeled data leads to incomplete training of deep learning algorithms and gives rise to a critical concern with respect to over-fitting. Generating additional samples through numerical simulation constitutes one of the most efficient methods to overcome insufficient GPR training samples. If both real and simulated samples are mixed for training, the deep learning model may miss the complexities in the samples and their learning state. Concurrently, the presence of noise and anomalous samples might lead the model to converge toward a suboptimal local minimum. This phenomenon is particularly conspicuous in the field of GPR because of the stochastic and disordered propagation of radar waves, resulting in amplified noise and abnormal samples. A robust curriculum learning algorithm, inspired by expert training methods, was created to train models from simple simulated samples to complex field samples. This strategy evaluates the performance of two object detection models, YOLOv7 and Faster R-CNN, under the proposed framework. Compared to the model trained from the whole datasets out of order, the precision, recall, F1_score, and mean average precision are all improved. The results demonstrate that the proposed method can enhance the model’s precision by approximately 8% and recall by about 11% under the same dataset. These findings highlight its great potential for expediting convergence and boosting the overall model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘一手完成签到,获得积分10
2秒前
2秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
3秒前
程琛发布了新的文献求助20
4秒前
杳霭流玉发布了新的文献求助10
4秒前
4秒前
刘一手发布了新的文献求助10
5秒前
猪猪hero发布了新的文献求助10
6秒前
7秒前
舒心明杰完成签到,获得积分10
7秒前
7秒前
科研通AI6应助阙女士采纳,获得10
9秒前
醉熏的伊完成签到,获得积分10
9秒前
AA18236931952发布了新的文献求助10
10秒前
上官若男应助郑板桥采纳,获得10
10秒前
AJY完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
方董发布了新的文献求助10
14秒前
lengchitu发布了新的文献求助10
16秒前
无花果应助哟嚛采纳,获得10
16秒前
斯沃特应助研友_Zb1rln采纳,获得10
17秒前
17秒前
无情的rr发布了新的文献求助10
18秒前
zgx关注了科研通微信公众号
19秒前
Phoo完成签到 ,获得积分10
19秒前
谢朝邦发布了新的文献求助30
21秒前
伟少发布了新的文献求助100
21秒前
GPTea举报耶咦求助涉嫌违规
21秒前
一只迅猛龙完成签到,获得积分10
22秒前
xiaoxiang完成签到,获得积分10
23秒前
JamesPei应助专注的水壶采纳,获得10
23秒前
三九发布了新的文献求助10
23秒前
23秒前
闫辰龙发布了新的文献求助10
24秒前
杳霭流玉完成签到,获得积分10
24秒前
浮游应助小于采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123