Automatic Detection of Road Subsurface Distress via Curriculum Learning: Learn Like an Expert

探地雷达 人工智能 基本事实 机器学习 计算机科学 深度学习 噪音(视频) 雷达 算法 数据挖掘 电信 图像(数学)
作者
Guanghua Yue,Chenglong Liu,Yishun Li,Yuchuan Du,Qian Gao
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241248164
摘要

The application of deep learning algorithms for subsurface distress detection using ground penetrating radar (GPR) data has seen extensive utilization. However, a significant impediment arises because of the challenge in acquiring ground-truth subsurface distress samples. This scarcity of labeled data leads to incomplete training of deep learning algorithms and gives rise to a critical concern with respect to over-fitting. Generating additional samples through numerical simulation constitutes one of the most efficient methods to overcome insufficient GPR training samples. If both real and simulated samples are mixed for training, the deep learning model may miss the complexities in the samples and their learning state. Concurrently, the presence of noise and anomalous samples might lead the model to converge toward a suboptimal local minimum. This phenomenon is particularly conspicuous in the field of GPR because of the stochastic and disordered propagation of radar waves, resulting in amplified noise and abnormal samples. A robust curriculum learning algorithm, inspired by expert training methods, was created to train models from simple simulated samples to complex field samples. This strategy evaluates the performance of two object detection models, YOLOv7 and Faster R-CNN, under the proposed framework. Compared to the model trained from the whole datasets out of order, the precision, recall, F1_score, and mean average precision are all improved. The results demonstrate that the proposed method can enhance the model’s precision by approximately 8% and recall by about 11% under the same dataset. These findings highlight its great potential for expediting convergence and boosting the overall model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑色的白鲸完成签到,获得积分10
刚刚
2秒前
韦明凯完成签到,获得积分20
4秒前
天外来物发布了新的文献求助50
4秒前
布拉布拉发布了新的文献求助10
4秒前
7秒前
8秒前
9秒前
微笑的觅夏完成签到 ,获得积分10
11秒前
机灵柚子发布了新的文献求助30
11秒前
11秒前
11秒前
11秒前
12秒前
传奇3应助科研小能手采纳,获得10
13秒前
13秒前
山泥若完成签到,获得积分20
13秒前
二二发布了新的文献求助10
14秒前
山泥若发布了新的文献求助10
16秒前
整齐依瑶发布了新的文献求助10
16秒前
17秒前
直率的小鸭子完成签到,获得积分10
18秒前
超级的鞅发布了新的文献求助10
20秒前
科研通AI2S应助义气的一德采纳,获得10
22秒前
善学以致用应助辞镜采纳,获得10
22秒前
22秒前
BBBBB完成签到,获得积分10
23秒前
steleegee发布了新的文献求助10
23秒前
贰陆完成签到,获得积分10
24秒前
小马甲应助堪祥采纳,获得10
24秒前
26秒前
轩辕书白完成签到,获得积分10
27秒前
bkagyin应助pamela采纳,获得10
27秒前
小二郎应助流沙采纳,获得10
28秒前
胡图完成签到,获得积分10
28秒前
运气贼好的熊猫完成签到 ,获得积分10
30秒前
机灵柚子发布了新的文献求助50
31秒前
32秒前
33秒前
huangbing123完成签到 ,获得积分10
33秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3115606
求助须知:如何正确求助?哪些是违规求助? 2765759
关于积分的说明 7683922
捐赠科研通 2421126
什么是DOI,文献DOI怎么找? 1285361
科研通“疑难数据库(出版商)”最低求助积分说明 620028
版权声明 599799