Automatic Detection of Road Subsurface Distress via Curriculum Learning: Learn Like an Expert

探地雷达 人工智能 基本事实 机器学习 计算机科学 深度学习 噪音(视频) 雷达 算法 数据挖掘 电信 图像(数学)
作者
Guanghua Yue,Chenglong Liu,Yishun Li,Yuchuan Du,Qian Gao
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241248164
摘要

The application of deep learning algorithms for subsurface distress detection using ground penetrating radar (GPR) data has seen extensive utilization. However, a significant impediment arises because of the challenge in acquiring ground-truth subsurface distress samples. This scarcity of labeled data leads to incomplete training of deep learning algorithms and gives rise to a critical concern with respect to over-fitting. Generating additional samples through numerical simulation constitutes one of the most efficient methods to overcome insufficient GPR training samples. If both real and simulated samples are mixed for training, the deep learning model may miss the complexities in the samples and their learning state. Concurrently, the presence of noise and anomalous samples might lead the model to converge toward a suboptimal local minimum. This phenomenon is particularly conspicuous in the field of GPR because of the stochastic and disordered propagation of radar waves, resulting in amplified noise and abnormal samples. A robust curriculum learning algorithm, inspired by expert training methods, was created to train models from simple simulated samples to complex field samples. This strategy evaluates the performance of two object detection models, YOLOv7 and Faster R-CNN, under the proposed framework. Compared to the model trained from the whole datasets out of order, the precision, recall, F1_score, and mean average precision are all improved. The results demonstrate that the proposed method can enhance the model’s precision by approximately 8% and recall by about 11% under the same dataset. These findings highlight its great potential for expediting convergence and boosting the overall model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱因斯宣发布了新的文献求助10
刚刚
只如初发布了新的文献求助10
1秒前
kirirto完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
黄紫红蓝发布了新的文献求助10
3秒前
4秒前
4秒前
anna1992发布了新的文献求助10
5秒前
5秒前
6秒前
cquank发布了新的文献求助10
6秒前
SYLH应助dongli6536采纳,获得10
6秒前
water完成签到,获得积分10
7秒前
上官若男应助shine采纳,获得10
7秒前
战战兢兢完成签到 ,获得积分10
7秒前
7秒前
Shinewei完成签到,获得积分10
7秒前
开心蘑菇应助自由的无色采纳,获得30
8秒前
fff完成签到,获得积分10
8秒前
9秒前
小鱼医生发布了新的文献求助10
9秒前
jyu发布了新的文献求助10
9秒前
10秒前
10秒前
xiejinhui发布了新的文献求助10
11秒前
kiki完成签到 ,获得积分10
11秒前
铁甲小宝发布了新的文献求助10
11秒前
Shinewei发布了新的文献求助10
11秒前
12秒前
12秒前
久9完成签到 ,获得积分10
14秒前
14秒前
cquank完成签到,获得积分10
15秒前
ZoraZeng完成签到,获得积分10
15秒前
15秒前
虚心的寒梦完成签到,获得积分10
16秒前
炫哥IRIS完成签到,获得积分10
16秒前
牧童完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650