Automatic Detection of Road Subsurface Distress via Curriculum Learning: Learn Like an Expert

探地雷达 人工智能 基本事实 机器学习 计算机科学 深度学习 噪音(视频) 雷达 算法 数据挖掘 电信 图像(数学)
作者
Guanghua Yue,Chenglong Liu,Yishun Li,Yuchuan Du,Qian Gao
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241248164
摘要

The application of deep learning algorithms for subsurface distress detection using ground penetrating radar (GPR) data has seen extensive utilization. However, a significant impediment arises because of the challenge in acquiring ground-truth subsurface distress samples. This scarcity of labeled data leads to incomplete training of deep learning algorithms and gives rise to a critical concern with respect to over-fitting. Generating additional samples through numerical simulation constitutes one of the most efficient methods to overcome insufficient GPR training samples. If both real and simulated samples are mixed for training, the deep learning model may miss the complexities in the samples and their learning state. Concurrently, the presence of noise and anomalous samples might lead the model to converge toward a suboptimal local minimum. This phenomenon is particularly conspicuous in the field of GPR because of the stochastic and disordered propagation of radar waves, resulting in amplified noise and abnormal samples. A robust curriculum learning algorithm, inspired by expert training methods, was created to train models from simple simulated samples to complex field samples. This strategy evaluates the performance of two object detection models, YOLOv7 and Faster R-CNN, under the proposed framework. Compared to the model trained from the whole datasets out of order, the precision, recall, F1_score, and mean average precision are all improved. The results demonstrate that the proposed method can enhance the model’s precision by approximately 8% and recall by about 11% under the same dataset. These findings highlight its great potential for expediting convergence and boosting the overall model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qin完成签到,获得积分10
刚刚
ZZJ完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
阿龙完成签到,获得积分10
1秒前
香蕉觅云应助凌云采纳,获得10
3秒前
3秒前
乐乐应助陈肖楠采纳,获得10
3秒前
彭于晏应助sssshhh采纳,获得10
3秒前
aa完成签到,获得积分10
3秒前
3秒前
可爱的函函应助Lei采纳,获得10
4秒前
小二郎应助帅气小猫咪采纳,获得10
4秒前
4秒前
糊涂涂完成签到,获得积分10
4秒前
大个应助飞飞采纳,获得10
5秒前
5秒前
博思好行发布了新的文献求助10
5秒前
大白薯完成签到,获得积分10
6秒前
6秒前
文青完成签到,获得积分10
6秒前
微笑笑萍发布了新的文献求助10
6秒前
花花完成签到,获得积分10
7秒前
风中的听白完成签到 ,获得积分10
7秒前
7秒前
甜甜亦丝发布了新的文献求助10
7秒前
7秒前
万能图书馆应助高媛采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
哭泣青烟完成签到 ,获得积分10
8秒前
8秒前
ljz910005发布了新的文献求助20
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
震动的嘉懿完成签到 ,获得积分20
9秒前
ShuY发布了新的文献求助10
9秒前
一二发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403