Automatic Detection of Road Subsurface Distress via Curriculum Learning: Learn Like an Expert

探地雷达 人工智能 基本事实 机器学习 计算机科学 深度学习 噪音(视频) 雷达 算法 数据挖掘 电信 图像(数学)
作者
Guanghua Yue,Chenglong Liu,Yishun Li,Yuchuan Du,Qian Gao
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241248164
摘要

The application of deep learning algorithms for subsurface distress detection using ground penetrating radar (GPR) data has seen extensive utilization. However, a significant impediment arises because of the challenge in acquiring ground-truth subsurface distress samples. This scarcity of labeled data leads to incomplete training of deep learning algorithms and gives rise to a critical concern with respect to over-fitting. Generating additional samples through numerical simulation constitutes one of the most efficient methods to overcome insufficient GPR training samples. If both real and simulated samples are mixed for training, the deep learning model may miss the complexities in the samples and their learning state. Concurrently, the presence of noise and anomalous samples might lead the model to converge toward a suboptimal local minimum. This phenomenon is particularly conspicuous in the field of GPR because of the stochastic and disordered propagation of radar waves, resulting in amplified noise and abnormal samples. A robust curriculum learning algorithm, inspired by expert training methods, was created to train models from simple simulated samples to complex field samples. This strategy evaluates the performance of two object detection models, YOLOv7 and Faster R-CNN, under the proposed framework. Compared to the model trained from the whole datasets out of order, the precision, recall, F1_score, and mean average precision are all improved. The results demonstrate that the proposed method can enhance the model’s precision by approximately 8% and recall by about 11% under the same dataset. These findings highlight its great potential for expediting convergence and boosting the overall model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶油淘淘应助Snoopy采纳,获得10
1秒前
kaka完成签到,获得积分20
1秒前
2秒前
3秒前
Ariellvv发布了新的文献求助30
4秒前
NexusExplorer应助水123采纳,获得10
4秒前
鳗鱼紊完成签到 ,获得积分10
5秒前
Lucy完成签到,获得积分10
5秒前
buno应助skr采纳,获得10
5秒前
深情安青应助独特访枫采纳,获得10
5秒前
liujunzhe应助jjf采纳,获得10
7秒前
7秒前
9秒前
Du_u20230228发布了新的文献求助50
10秒前
归尘应助kaka采纳,获得10
10秒前
11秒前
zjj发布了新的文献求助100
11秒前
王明磊完成签到 ,获得积分10
12秒前
枇杷膏完成签到,获得积分10
13秒前
hh完成签到 ,获得积分10
13秒前
若水完成签到,获得积分0
13秒前
烟花应助一个西藏采纳,获得30
14秒前
独特的凝云完成签到 ,获得积分10
14秒前
小手冰凉完成签到,获得积分10
15秒前
whx完成签到,获得积分10
16秒前
晶晶完成签到,获得积分10
16秒前
归尘应助han采纳,获得10
17秒前
大花卷完成签到,获得积分10
17秒前
小张完成签到,获得积分10
17秒前
18秒前
Gengen完成签到,获得积分10
18秒前
星星完成签到,获得积分10
18秒前
韩韩喜欢吃蛋糕完成签到,获得积分20
19秒前
ZDM6094完成签到 ,获得积分10
21秒前
21秒前
24秒前
水123发布了新的文献求助10
24秒前
25秒前
汶溢完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832