Automating detection of diagnostic error of infectious diseases using machine learning

机器学习 人工智能 急诊科 杠杆(统计) 医学 传染病(医学专业) 急诊分诊台 公制(单位) 疾病 计算机科学 急诊医学 病理 运营管理 精神科 经济
作者
Kelly Peterson,Alec B. Chapman,Wathsala Widanagamaachchi,Jesse Sutton,Brennan Ochoa,Barbara E. Jones,Vanessa Stevens,David C. Classen,Makoto Jones
出处
期刊:PLOS digital health [Public Library of Science]
卷期号:3 (6): e0000528-e0000528
标识
DOI:10.1371/journal.pdig.0000528
摘要

Diagnostic error, a cause of substantial morbidity and mortality, is largely discovered and evaluated through self-report and manual review, which is costly and not suitable to real-time intervention. Opportunities exist to leverage electronic health record data for automated detection of potential misdiagnosis, executed at scale and generalized across diseases. We propose a novel automated approach to identifying diagnostic divergence considering both diagnosis and risk of mortality. Our objective was to identify cases of emergency department infectious disease misdiagnoses by measuring the deviation between predicted diagnosis and documented diagnosis, weighted by mortality. Two machine learning models were trained for prediction of infectious disease and mortality using the first 24h of data. Charts were manually reviewed by clinicians to determine whether there could have been a more correct or timely diagnosis. The proposed approach was validated against manual reviews and compared using the Spearman rank correlation. We analyzed 6.5 million ED visits and over 700 million associated clinical features from over one hundred emergency departments. The testing set performances of the infectious disease (Macro F1 = 86.7, AUROC 90.6 to 94.7) and mortality model (Macro F1 = 97.6, AUROC 89.1 to 89.1) were in expected ranges. Human reviews and the proposed automated metric demonstrated positive correlations ranging from 0.231 to 0.358. The proposed approach for diagnostic deviation shows promise as a potential tool for clinicians to find diagnostic errors. Given the vast number of clinical features used in this analysis, further improvements likely need to either take greater account of data structure (what occurs before when) or involve natural language processing. Further work is needed to explain the potential reasons for divergence and to refine and validate the approach for implementation in real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YamDaamCaa应助科研通管家采纳,获得30
刚刚
1秒前
1秒前
慕青应助张wx_100采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Water应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
linyaya完成签到 ,获得积分10
2秒前
2秒前
Lucas应助少言采纳,获得10
2秒前
好好学习发10分完成签到,获得积分10
3秒前
bennieooo发布了新的文献求助10
3秒前
4秒前
5秒前
小鱼完成签到,获得积分10
5秒前
5秒前
医路前行完成签到 ,获得积分10
5秒前
付芽莲发布了新的文献求助10
6秒前
6秒前
6秒前
勤劳的鸡发布了新的文献求助10
7秒前
7秒前
落枫流年发布了新的文献求助30
7秒前
8秒前
明理雅容完成签到,获得积分10
9秒前
义气的嘉熙完成签到,获得积分10
9秒前
9秒前
an关闭了an文献求助
9秒前
慕青应助nostalgia采纳,获得10
10秒前
Akim应助小钱全采纳,获得10
10秒前
斯文败类应助Alice采纳,获得10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113