亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automating detection of diagnostic error of infectious diseases using machine learning

机器学习 人工智能 急诊科 杠杆(统计) 医学 传染病(医学专业) 急诊分诊台 公制(单位) 疾病 计算机科学 急诊医学 病理 运营管理 精神科 经济
作者
Kelly Peterson,Alec B. Chapman,Wathsala Widanagamaachchi,Jesse Sutton,Brennan Ochoa,Barbara E. Jones,Vanessa Stevens,David C. Classen,Makoto Jones
出处
期刊:PLOS digital health [Public Library of Science]
卷期号:3 (6): e0000528-e0000528
标识
DOI:10.1371/journal.pdig.0000528
摘要

Diagnostic error, a cause of substantial morbidity and mortality, is largely discovered and evaluated through self-report and manual review, which is costly and not suitable to real-time intervention. Opportunities exist to leverage electronic health record data for automated detection of potential misdiagnosis, executed at scale and generalized across diseases. We propose a novel automated approach to identifying diagnostic divergence considering both diagnosis and risk of mortality. Our objective was to identify cases of emergency department infectious disease misdiagnoses by measuring the deviation between predicted diagnosis and documented diagnosis, weighted by mortality. Two machine learning models were trained for prediction of infectious disease and mortality using the first 24h of data. Charts were manually reviewed by clinicians to determine whether there could have been a more correct or timely diagnosis. The proposed approach was validated against manual reviews and compared using the Spearman rank correlation. We analyzed 6.5 million ED visits and over 700 million associated clinical features from over one hundred emergency departments. The testing set performances of the infectious disease (Macro F1 = 86.7, AUROC 90.6 to 94.7) and mortality model (Macro F1 = 97.6, AUROC 89.1 to 89.1) were in expected ranges. Human reviews and the proposed automated metric demonstrated positive correlations ranging from 0.231 to 0.358. The proposed approach for diagnostic deviation shows promise as a potential tool for clinicians to find diagnostic errors. Given the vast number of clinical features used in this analysis, further improvements likely need to either take greater account of data structure (what occurs before when) or involve natural language processing. Further work is needed to explain the potential reasons for divergence and to refine and validate the approach for implementation in real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李健应助堕落的飞猪采纳,获得10
3秒前
5秒前
pure123完成签到,获得积分10
5秒前
wenliu完成签到,获得积分10
5秒前
普通用户30号完成签到 ,获得积分10
7秒前
wenliu发布了新的文献求助10
8秒前
10秒前
24秒前
30秒前
40秒前
41秒前
42秒前
dtsgydbd发布了新的文献求助10
45秒前
饼子发布了新的文献求助10
47秒前
唐泽雪穗发布了新的文献求助10
48秒前
59秒前
1分钟前
1分钟前
wrl2023完成签到,获得积分10
1分钟前
魏佳奇发布了新的文献求助10
1分钟前
赘婿应助dtsgydbd采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得60
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
cc完成签到,获得积分10
1分钟前
334niubi666完成签到 ,获得积分10
1分钟前
丘比特应助魏佳奇采纳,获得10
1分钟前
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
脑洞疼应助槑槑采纳,获得10
2分钟前
2分钟前
下文献的蜉蝣完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186254
求助须知:如何正确求助?哪些是违规求助? 4371519
关于积分的说明 13612286
捐赠科研通 4223980
什么是DOI,文献DOI怎么找? 2316753
邀请新用户注册赠送积分活动 1315380
关于科研通互助平台的介绍 1264495