草莓
细胞分裂
生物
细胞
细胞生物学
植物
师(数学)
细胞生长
遗传学
算术
数学
作者
Ying Li,Wenqian Zhao,Wenqian Zhao,Peng Zhang,Wenqian Zhao,Wenqian Zhao
标识
DOI:10.1016/j.plaphy.2024.108804
摘要
Fruit development is mainly regulated by cell division and expansion. As a negative regulator of the anaphase-promoting complex/cyclosome, UVI4 plays important roles in plant growth and development via coordinating cell cycle. However, currently there is no report on UVI4's functions in regulating fruit development in strawberry. Here, Fragaria vesca homolog FvUVI4 is identified and localizes in the nucleus. FvUVI4 has high gene expression in roots, leaves, flower, buds and green fruits, and low expression in petiole, stem, white and yellow fruit. Fruit development of F. vesca 'Hawaii4' is regulated by endoreduplication, and the expression of FvUVI4 is negatively correlated with fruit cell size. Overexpression of FvUVI4 inhibits endoreduplication of leaves, flowers and fruits in both Arabidopsis and F. vesca 'Hawaii4', thereby limiting cell expansion and decreasing cell area. Overexpression of FvUVI4 also inhibits mitotic cell cycle leading to decreased cell number, and ultimately affects the growth of leaves, petals and seeds or fruits. Arabidopsis uvi4 mutants obtained via CRISPR-Cas9 technology display opposite growth phenotypes to Arabidopsis and F. vesca 'Hawaii4' overexpression lines, which can be restored by overexpression of FvUVI4 in Arabidopsis uvi4 mutants. In conclusion, our study indicates that FvUVI4 inhibits cell expansion and cell division to modulate receptacle development in woodland strawberry.
科研通智能强力驱动
Strongly Powered by AbleSci AI