China's first sub-meter building footprints derived by deep learning

遥感 中国 环境科学 计算机科学 地质学 地理 考古 天文 物理
作者
Xin Huang,Zhen Zhang,Jiayi Li
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:311: 114274-114274
标识
DOI:10.1016/j.rse.2024.114274
摘要

The high spatial resolution building footprints are crucial for understanding urban development and its associated applications. However, up to now, the sub-meter-level building footprint data of China is still lacking. The challenges arise from two aspects: 1) the number of training samples is inadequate for large-scale building extraction. 2) the accuracy and efficiency of current models are insufficient to conduct large-scale building extraction. Therefore, we propose a framework for large-scale building extraction in this study, including semi-automated sample generation, building extraction model, model training, and post-processing. Specifically, the main technical contributions include: 1) BldgNet (Building Extraction Network) is proposed, including the Large Window Attention, Edge Attention, and Distribution Alignment Module with consideration of spatial contextual information, to address the challenge of the multi-scale building extraction, building boundary delineation, and class imbalance, respectively; 2) a semi-supervised training approach is proposed for large-scale building extraction, leveraging the incomplete information from OpenStreetMap (OSM) to enhance the diversity of building samples and the robustness of the model. Meanwhile, we created an open-source Global Building Dataset (GBD) comprising approximately 800,000 high-resolution (0.25 m) samples. This dataset incorporates diverse building styles worldwide, offering support for global building extraction. Based on the constructed sample set and the proposed deep net, we generated China's first sub-meter (0.5 m) building footprint dataset (CBF). Through testing on 750,000 buildings from 350 cities, the overall F1 score for CBF reached 83.71%. Finally, we validated that the proposed building extraction model can achieve satisfactory results compared to existing representative deep networks. GBD and CBF datasets can be publicly available and downloadable via https://zenodo.org/doi/10.5281/zenodo.10043351.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助迷路的台灯采纳,获得10
1秒前
方勇飞发布了新的文献求助10
1秒前
天天快乐应助蛋卷采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
李健应助魔法少女猪壮壮采纳,获得10
5秒前
5秒前
和花花完成签到,获得积分10
6秒前
6秒前
小y扬土完成签到,获得积分10
7秒前
奇怪的铁柱大人完成签到,获得积分10
7秒前
聪仔发布了新的文献求助10
7秒前
方勇飞完成签到,获得积分10
8秒前
清风发布了新的文献求助10
8秒前
0701发布了新的文献求助10
8秒前
9秒前
yyds发布了新的文献求助30
11秒前
11秒前
Fitz完成签到,获得积分10
11秒前
游一发布了新的文献求助10
12秒前
慕青应助seanx采纳,获得10
12秒前
12秒前
雨中小王应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
13秒前
雨中小王应助科研通管家采纳,获得10
13秒前
不配.应助科研通管家采纳,获得200
13秒前
李健应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497