China's first sub-meter building footprints derived by deep learning

遥感 中国 环境科学 计算机科学 地质学 地理 考古 物理 天文
作者
Xin Huang,Zhen Zhang,Jiayi Li
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:311: 114274-114274
标识
DOI:10.1016/j.rse.2024.114274
摘要

The high spatial resolution building footprints are crucial for understanding urban development and its associated applications. However, up to now, the sub-meter-level building footprint data of China is still lacking. The challenges arise from two aspects: 1) the number of training samples is inadequate for large-scale building extraction. 2) the accuracy and efficiency of current models are insufficient to conduct large-scale building extraction. Therefore, we propose a framework for large-scale building extraction in this study, including semi-automated sample generation, building extraction model, model training, and post-processing. Specifically, the main technical contributions include: 1) BldgNet (Building Extraction Network) is proposed, including the Large Window Attention, Edge Attention, and Distribution Alignment Module with consideration of spatial contextual information, to address the challenge of the multi-scale building extraction, building boundary delineation, and class imbalance, respectively; 2) a semi-supervised training approach is proposed for large-scale building extraction, leveraging the incomplete information from OpenStreetMap (OSM) to enhance the diversity of building samples and the robustness of the model. Meanwhile, we created an open-source Global Building Dataset (GBD) comprising approximately 800,000 high-resolution (0.25 m) samples. This dataset incorporates diverse building styles worldwide, offering support for global building extraction. Based on the constructed sample set and the proposed deep net, we generated China's first sub-meter (0.5 m) building footprint dataset (CBF). Through testing on 750,000 buildings from 350 cities, the overall F1 score for CBF reached 83.71%. Finally, we validated that the proposed building extraction model can achieve satisfactory results compared to existing representative deep networks. GBD and CBF datasets can be publicly available and downloadable via https://zenodo.org/doi/10.5281/zenodo.10043351.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xien完成签到,获得积分10
1秒前
徐佳乐发布了新的文献求助10
1秒前
起起完成签到 ,获得积分10
2秒前
zzz发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助称心茹嫣采纳,获得10
5秒前
wmlsdym发布了新的文献求助10
5秒前
cyw发布了新的文献求助10
5秒前
6秒前
Panmm完成签到,获得积分10
6秒前
6秒前
啊哈哈哈发布了新的文献求助10
7秒前
123发布了新的文献求助10
9秒前
10秒前
10秒前
hokuto应助wei采纳,获得10
10秒前
Liuyuu发布了新的文献求助30
10秒前
10秒前
Fei发布了新的文献求助30
10秒前
livresse发布了新的文献求助10
11秒前
wmlsdym完成签到,获得积分20
11秒前
14秒前
14秒前
14秒前
fst完成签到,获得积分10
15秒前
15秒前
15秒前
科研通AI2S应助任风采纳,获得10
15秒前
NMSL发布了新的文献求助10
16秒前
海豚有海完成签到,获得积分10
16秒前
科目三应助臭图图采纳,获得10
17秒前
17秒前
hhh发布了新的文献求助10
18秒前
姜灭绝完成签到,获得积分10
18秒前
18秒前
ivy发布了新的文献求助10
18秒前
18秒前
安详以晴发布了新的文献求助10
19秒前
19秒前
dd发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870