China's first sub-meter building footprints derived by deep learning

遥感 中国 环境科学 计算机科学 地质学 地理 考古 天文 物理
作者
Xin Huang,Zhen Zhang,Jiayi Li
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:311: 114274-114274
标识
DOI:10.1016/j.rse.2024.114274
摘要

The high spatial resolution building footprints are crucial for understanding urban development and its associated applications. However, up to now, the sub-meter-level building footprint data of China is still lacking. The challenges arise from two aspects: 1) the number of training samples is inadequate for large-scale building extraction. 2) the accuracy and efficiency of current models are insufficient to conduct large-scale building extraction. Therefore, we propose a framework for large-scale building extraction in this study, including semi-automated sample generation, building extraction model, model training, and post-processing. Specifically, the main technical contributions include: 1) BldgNet (Building Extraction Network) is proposed, including the Large Window Attention, Edge Attention, and Distribution Alignment Module with consideration of spatial contextual information, to address the challenge of the multi-scale building extraction, building boundary delineation, and class imbalance, respectively; 2) a semi-supervised training approach is proposed for large-scale building extraction, leveraging the incomplete information from OpenStreetMap (OSM) to enhance the diversity of building samples and the robustness of the model. Meanwhile, we created an open-source Global Building Dataset (GBD) comprising approximately 800,000 high-resolution (0.25 m) samples. This dataset incorporates diverse building styles worldwide, offering support for global building extraction. Based on the constructed sample set and the proposed deep net, we generated China's first sub-meter (0.5 m) building footprint dataset (CBF). Through testing on 750,000 buildings from 350 cities, the overall F1 score for CBF reached 83.71%. Finally, we validated that the proposed building extraction model can achieve satisfactory results compared to existing representative deep networks. GBD and CBF datasets can be publicly available and downloadable via https://zenodo.org/doi/10.5281/zenodo.10043351.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青春梦完成签到 ,获得积分10
6秒前
11秒前
asdwind完成签到,获得积分10
11秒前
狼来了aas完成签到,获得积分10
14秒前
14秒前
S月小小发布了新的文献求助10
16秒前
没有名字完成签到 ,获得积分10
17秒前
支雨泽完成签到,获得积分10
21秒前
22秒前
稳重乌冬面完成签到 ,获得积分10
23秒前
砚木完成签到 ,获得积分10
23秒前
mly完成签到 ,获得积分10
24秒前
DeenMayo完成签到,获得积分10
25秒前
26秒前
科研狼完成签到,获得积分10
27秒前
IAMXC发布了新的文献求助10
27秒前
时尚的开山完成签到,获得积分10
31秒前
梁晓雪完成签到 ,获得积分10
32秒前
IAMXC完成签到,获得积分20
34秒前
毛舒敏完成签到 ,获得积分10
34秒前
陈宇航完成签到 ,获得积分10
36秒前
OeO完成签到 ,获得积分10
40秒前
41秒前
世上僅有的榮光之路完成签到,获得积分0
41秒前
fanglihua完成签到 ,获得积分10
51秒前
小成完成签到 ,获得积分10
54秒前
Pepsi完成签到 ,获得积分10
56秒前
56秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
彭于晏应助科研通管家采纳,获得10
57秒前
小离应助科研通管家采纳,获得10
57秒前
57秒前
脑洞疼应助科研通管家采纳,获得10
57秒前
酷波er应助科研通管家采纳,获得10
57秒前
2000pluv完成签到 ,获得积分10
57秒前
CodeCraft应助科研通管家采纳,获得10
57秒前
专注的雪完成签到 ,获得积分10
1分钟前
芒果完成签到 ,获得积分10
1分钟前
toe完成签到,获得积分10
1分钟前
顾矜应助_蝴蝶小姐采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304275
求助须知:如何正确求助?哪些是违规求助? 4450880
关于积分的说明 13849976
捐赠科研通 4337819
什么是DOI,文献DOI怎么找? 2381673
邀请新用户注册赠送积分活动 1376668
关于科研通互助平台的介绍 1343751