清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

China's first sub-meter building footprints derived by deep learning

遥感 中国 环境科学 计算机科学 地质学 地理 考古 物理 天文
作者
Xin Huang,Zhen Zhang,Jiayi Li
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:311: 114274-114274
标识
DOI:10.1016/j.rse.2024.114274
摘要

The high spatial resolution building footprints are crucial for understanding urban development and its associated applications. However, up to now, the sub-meter-level building footprint data of China is still lacking. The challenges arise from two aspects: 1) the number of training samples is inadequate for large-scale building extraction. 2) the accuracy and efficiency of current models are insufficient to conduct large-scale building extraction. Therefore, we propose a framework for large-scale building extraction in this study, including semi-automated sample generation, building extraction model, model training, and post-processing. Specifically, the main technical contributions include: 1) BldgNet (Building Extraction Network) is proposed, including the Large Window Attention, Edge Attention, and Distribution Alignment Module with consideration of spatial contextual information, to address the challenge of the multi-scale building extraction, building boundary delineation, and class imbalance, respectively; 2) a semi-supervised training approach is proposed for large-scale building extraction, leveraging the incomplete information from OpenStreetMap (OSM) to enhance the diversity of building samples and the robustness of the model. Meanwhile, we created an open-source Global Building Dataset (GBD) comprising approximately 800,000 high-resolution (0.25 m) samples. This dataset incorporates diverse building styles worldwide, offering support for global building extraction. Based on the constructed sample set and the proposed deep net, we generated China's first sub-meter (0.5 m) building footprint dataset (CBF). Through testing on 750,000 buildings from 350 cities, the overall F1 score for CBF reached 83.71%. Finally, we validated that the proposed building extraction model can achieve satisfactory results compared to existing representative deep networks. GBD and CBF datasets can be publicly available and downloadable via https://zenodo.org/doi/10.5281/zenodo.10043351.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
厚朴完成签到 ,获得积分10
20秒前
21秒前
XD824发布了新的文献求助10
28秒前
qdsj2033完成签到,获得积分10
42秒前
馆长举报聪明无颜求助涉嫌违规
45秒前
冷静丸子完成签到 ,获得积分10
52秒前
55秒前
量子星尘发布了新的文献求助10
1分钟前
juliar完成签到 ,获得积分10
1分钟前
rick3455完成签到 ,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
六一儿童节完成签到 ,获得积分0
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
小明完成签到 ,获得积分10
1分钟前
1分钟前
XD824发布了新的文献求助10
1分钟前
Guo完成签到,获得积分20
1分钟前
柳叶洋完成签到,获得积分10
2分钟前
tingalan完成签到,获得积分10
2分钟前
小白白完成签到 ,获得积分10
2分钟前
王佳豪完成签到,获得积分10
2分钟前
2分钟前
XD824发布了新的文献求助10
2分钟前
3分钟前
yun发布了新的文献求助10
3分钟前
彦子完成签到 ,获得积分10
3分钟前
Gary完成签到 ,获得积分10
3分钟前
CipherSage应助mervin采纳,获得10
3分钟前
请输入昵称完成签到 ,获得积分10
3分钟前
3分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
Amon完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
幽默滑板完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
l老王完成签到 ,获得积分10
3分钟前
秋夜临完成签到,获得积分0
3分钟前
gwbk完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596940
求助须知:如何正确求助?哪些是违规求助? 4008683
关于积分的说明 12409438
捐赠科研通 3687775
什么是DOI,文献DOI怎么找? 2032685
邀请新用户注册赠送积分活动 1065914
科研通“疑难数据库(出版商)”最低求助积分说明 951209