Experimental insights and modeling innovations: Deciphering Fe(VI) oxidation in imidazole ionic liquids through QSAR and RFR

离子液体 数量结构-活动关系 咪唑 离子键合 化学 环境化学 化学工程 有机化学 立体化学 工程类 催化作用 离子
作者
Bei‐Bei Li,Ruijuan Qu,Ting Wang,Ruixue Guo,Jie Tian,Shuyi Li,Mostafa R. Abukhadra,Rehab Mahmoud,Zunyao Wang
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:476: 134980-134980
标识
DOI:10.1016/j.jhazmat.2024.134980
摘要

In this investigation, we conducted a detailed analysis of the oxidation of 16 imidazole ionic liquid variants by Fe(VI) under uniform experimental setups, thereby securing a dataset of second-order reaction rate constants (kobs). This methodology ensures superior data consistency and comparability over traditional methods that amalgamate disparate data from varied studies. Utilizing 16 chemical structural parameters obtained via Density Functional Theory (DFT) as descriptors, we developed a Quantitative Structure Activity Relationship (QSAR) model. Through rigorous correlation analysis, Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Applicability Domain (AD) evaluation, we identified a pronounced negative correlation between the molecular orbital gap energy (Egap) and kobs. MLR analysis further underscored Egap as a pivotal predictive variable, with its lower values indicating heightened oxidative reactivity towards Fe(VI) in the ionic liquids, leading the QSAR model to achieve a predictive accuracy of 0.95. Furthermore, we integrated an advanced machine learning approach - Random Forest Regression (RFR), which adeptly highlighted the critical factors influencing the oxidation efficiency of imidazole ionic liquids by Fe(VI) through elaborate decision trees, feature importance assessment, Recursive Feature Elimination (RFE), and cross-validation strategies. The RFR model demonstrated a remarkable predictive performance of 0.98. Both QSAR and RFR models pinpointed Egap as a key descriptor significantly affecting oxidation efficiency, with the RFR model presenting lower root mean square errors, establishing it as a more reliable predictive tool. The application of the RFR model in this study significantly improved the model's stability and the intuitive display of key influencing factors, introducing promising advanced analytical tools to the field of environmental chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Psychexin应助冯世嘉采纳,获得10
2秒前
4秒前
yanhuazi完成签到,获得积分10
4秒前
6秒前
copycat完成签到,获得积分10
6秒前
领导范儿应助bji采纳,获得10
6秒前
6秒前
歇菜完成签到,获得积分10
7秒前
wanci应助穆空采纳,获得10
9秒前
柚子青芒完成签到,获得积分20
11秒前
copycat发布了新的文献求助10
12秒前
刍青完成签到,获得积分10
13秒前
自觉的夏蓉完成签到,获得积分10
13秒前
14秒前
GreyHeron关注了科研通微信公众号
14秒前
xk发布了新的文献求助10
18秒前
20秒前
123发布了新的文献求助10
23秒前
XYZ完成签到 ,获得积分10
25秒前
26秒前
26秒前
111111111111111完成签到,获得积分10
27秒前
30秒前
yyyyy发布了新的文献求助10
31秒前
慕青应助爱撒娇的紫菜采纳,获得10
31秒前
SSS木南发布了新的文献求助10
32秒前
35秒前
35秒前
36秒前
36秒前
38秒前
38秒前
小白发布了新的文献求助10
39秒前
123发布了新的文献求助10
39秒前
Akim应助xxxhhh采纳,获得10
40秒前
王学成发布了新的文献求助10
41秒前
沫笙给沫笙的求助进行了留言
41秒前
GreyHeron发布了新的文献求助10
41秒前
远方发布了新的文献求助10
42秒前
43秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417