Experimental insights and modeling innovations: Deciphering Fe(VI) oxidation in imidazole ionic liquids through QSAR and RFR

离子液体 数量结构-活动关系 咪唑 离子键合 化学 环境化学 化学工程 有机化学 立体化学 工程类 催化作用 离子
作者
Bei‐Bei Li,Ruijuan Qu,Ting Wang,Ruixue Guo,Jie Tian,Shuyi Li,Mostafa R. Abukhadra,Rehab Mahmoud,Zunyao Wang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:476: 134980-134980
标识
DOI:10.1016/j.jhazmat.2024.134980
摘要

In this investigation, we conducted a detailed analysis of the oxidation of 16 imidazole ionic liquid variants by Fe(VI) under uniform experimental setups, thereby securing a dataset of second-order reaction rate constants (kobs). This methodology ensures superior data consistency and comparability over traditional methods that amalgamate disparate data from varied studies. Utilizing 16 chemical structural parameters obtained via Density Functional Theory (DFT) as descriptors, we developed a Quantitative Structure Activity Relationship (QSAR) model. Through rigorous correlation analysis, Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Applicability Domain (AD) evaluation, we identified a pronounced negative correlation between the molecular orbital gap energy (Egap) and kobs. MLR analysis further underscored Egap as a pivotal predictive variable, with its lower values indicating heightened oxidative reactivity towards Fe(VI) in the ionic liquids, leading the QSAR model to achieve a predictive accuracy of 0.95. Furthermore, we integrated an advanced machine learning approach - Random Forest Regression (RFR), which adeptly highlighted the critical factors influencing the oxidation efficiency of imidazole ionic liquids by Fe(VI) through elaborate decision trees, feature importance assessment, Recursive Feature Elimination (RFE), and cross-validation strategies. The RFR model demonstrated a remarkable predictive performance of 0.98. Both QSAR and RFR models pinpointed Egap as a key descriptor significantly affecting oxidation efficiency, with the RFR model presenting lower root mean square errors, establishing it as a more reliable predictive tool. The application of the RFR model in this study significantly improved the model's stability and the intuitive display of key influencing factors, introducing promising advanced analytical tools to the field of environmental chemistry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
真实的亦竹完成签到,获得积分20
刚刚
赵大虾完成签到,获得积分10
1秒前
希望天下0贩的0应助Siren采纳,获得10
2秒前
silentforsure发布了新的文献求助10
3秒前
Awalong发布了新的文献求助10
3秒前
4秒前
4秒前
打工人完成签到,获得积分10
5秒前
欢呼涵柏完成签到,获得积分20
5秒前
5秒前
lutos发布了新的文献求助10
5秒前
5秒前
6秒前
科目三应助TvTiing采纳,获得10
6秒前
7秒前
情怀应助开朗路人采纳,获得10
7秒前
小葵完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
善良的函发布了新的文献求助10
9秒前
10秒前
FashionBoy应助清秀秀采纳,获得10
12秒前
12秒前
浮游应助lutos采纳,获得10
12秒前
12秒前
13秒前
13秒前
13秒前
王sy完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
橘猫217完成签到,获得积分10
16秒前
yang发布了新的文献求助10
16秒前
16秒前
16秒前
思源应助你好纠结伦采纳,获得10
16秒前
赵大虾发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674