Experimental insights and modeling innovations: Deciphering Fe(VI) oxidation in imidazole ionic liquids through QSAR and RFR

离子液体 数量结构-活动关系 咪唑 离子键合 化学 环境化学 化学工程 有机化学 立体化学 工程类 催化作用 离子
作者
Bei‐Bei Li,Ruijuan Qu,Ting Wang,Ruixue Guo,Jie Tian,Shuyi Li,Mostafa R. Abukhadra,Rehab Mahmoud,Zunyao Wang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:476: 134980-134980
标识
DOI:10.1016/j.jhazmat.2024.134980
摘要

In this investigation, we conducted a detailed analysis of the oxidation of 16 imidazole ionic liquid variants by Fe(VI) under uniform experimental setups, thereby securing a dataset of second-order reaction rate constants (kobs). This methodology ensures superior data consistency and comparability over traditional methods that amalgamate disparate data from varied studies. Utilizing 16 chemical structural parameters obtained via Density Functional Theory (DFT) as descriptors, we developed a Quantitative Structure Activity Relationship (QSAR) model. Through rigorous correlation analysis, Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Applicability Domain (AD) evaluation, we identified a pronounced negative correlation between the molecular orbital gap energy (Egap) and kobs. MLR analysis further underscored Egap as a pivotal predictive variable, with its lower values indicating heightened oxidative reactivity towards Fe(VI) in the ionic liquids, leading the QSAR model to achieve a predictive accuracy of 0.95. Furthermore, we integrated an advanced machine learning approach - Random Forest Regression (RFR), which adeptly highlighted the critical factors influencing the oxidation efficiency of imidazole ionic liquids by Fe(VI) through elaborate decision trees, feature importance assessment, Recursive Feature Elimination (RFE), and cross-validation strategies. The RFR model demonstrated a remarkable predictive performance of 0.98. Both QSAR and RFR models pinpointed Egap as a key descriptor significantly affecting oxidation efficiency, with the RFR model presenting lower root mean square errors, establishing it as a more reliable predictive tool. The application of the RFR model in this study significantly improved the model's stability and the intuitive display of key influencing factors, introducing promising advanced analytical tools to the field of environmental chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抱小熊睡觉完成签到,获得积分10
1秒前
3秒前
4秒前
无限的高烽完成签到,获得积分10
5秒前
6秒前
AIA7完成签到,获得积分10
6秒前
尊敬雨双发布了新的文献求助10
6秒前
7秒前
小茹发布了新的文献求助10
7秒前
beyondmin发布了新的文献求助10
10秒前
12秒前
Ryan123发布了新的文献求助10
12秒前
haha完成签到,获得积分10
13秒前
orixero应助yy采纳,获得30
13秒前
16秒前
18秒前
Pioz发布了新的文献求助10
18秒前
小茹完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
木子完成签到 ,获得积分10
22秒前
22秒前
五香完成签到 ,获得积分10
23秒前
24秒前
25秒前
25秒前
天天快乐应助义气的如松采纳,获得10
25秒前
33完成签到,获得积分10
25秒前
17发布了新的文献求助10
26秒前
27秒前
叫我Le哥发布了新的文献求助10
29秒前
上官若男应助务实的绮山采纳,获得10
29秒前
31秒前
32秒前
32秒前
不配.应助认真的一刀采纳,获得10
32秒前
欣喜大地完成签到 ,获得积分10
32秒前
啦啦啦啦啦完成签到,获得积分10
33秒前
shihui完成签到 ,获得积分10
35秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128973
求助须知:如何正确求助?哪些是违规求助? 2779757
关于积分的说明 7744663
捐赠科研通 2434935
什么是DOI,文献DOI怎么找? 1293790
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530