Alleviating the sluggish kinetics of all-solid-state batteries via cathode single-crystallization and multi-functional interface modification

电解质 阴极 材料科学 电化学 电池(电) 表面改性 电极 化学工程 纳米技术 化学 物理化学 工程类 物理 功率(物理) 量子力学
作者
W. F. Liu,Xin‐Hai Meng,Ziyi Zhou,Qiang Zheng,Ji‐Lei Shi,Yue Gong,Yu‐Guo Guo
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:98: 123-133
标识
DOI:10.1016/j.jechem.2024.06.014
摘要

The application of Li-rich Mn-based cathodes, the most promising candidates for high-energy-density Li-ion batteries, in all-solid-state batteries can further enhance the safety and stability of battery systems. However, the utilization of high-capacity Li-rich cathodes has been limited by sluggish kinetics and severe interfacial issues in all-solid-state batteries. Here, a multi-functional interface modification strategy involving dispersed submicron single-crystal structure and multi-functional surface modification layer obtained through in-situ interfacial chemical reactions was designed to improve the electrochemical performance of Li-rich Mn-based cathodes in all-solid-state batteries. The design of submicron single-crystal structure promotes the interface contact between the cathode particles and the solid-state electrolyte, and thus constructs a more complete ion and electron conductive network in the composite cathode. Furthermore, the Li-gradient layer and the lithium molybdate coating layer constructed on the surface of single-crystal Li-rich particles accelerate the transport of Li ions at the interface, suppress the side reactions between cathodes and electrolyte, and inhibit the oxygen release on the cathode surface. The optimized Li-rich cathode materials exhibit excellent electrochemical performance in halide all-solid-state batteries. This study emphasizes the vital importance of reaction kinetics and interfacial stability of Li-rich cathodes in all-solid-state batteries and provides a facile modification strategy to enhance the electrochemical performance of all-solid-state batteries based on Li-rich cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
斯文败类应助RC_Wang采纳,获得10
1秒前
prince666完成签到,获得积分10
4秒前
未来2发布了新的文献求助10
5秒前
6秒前
prince666发布了新的文献求助10
7秒前
宣孤菱完成签到,获得积分10
8秒前
8R60d8应助muhtar采纳,获得10
8秒前
9秒前
9秒前
11秒前
quququ发布了新的文献求助10
12秒前
Lum1na发布了新的文献求助10
13秒前
湛湛完成签到,获得积分10
14秒前
17秒前
maybe发布了新的文献求助10
17秒前
hsa_ID完成签到,获得积分10
17秒前
Lum1na完成签到,获得积分10
18秒前
charles完成签到,获得积分10
18秒前
20秒前
21秒前
xin发布了新的文献求助10
21秒前
23秒前
平常的羊完成签到 ,获得积分10
24秒前
东方欲晓完成签到 ,获得积分0
24秒前
0o0发布了新的文献求助10
25秒前
rpe发布了新的文献求助10
26秒前
26秒前
www发布了新的文献求助10
26秒前
可爱的函函应助maybe采纳,获得10
27秒前
CAOHOU举报zhang97求助涉嫌违规
27秒前
30秒前
俭朴士晋完成签到,获得积分10
31秒前
茜茜发布了新的文献求助30
31秒前
zfy完成签到 ,获得积分10
32秒前
材1完成签到 ,获得积分10
33秒前
hug完成签到,获得积分0
34秒前
Ricardo完成签到,获得积分10
34秒前
spoon1026完成签到,获得积分10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141198
捐赠科研通 3241162
什么是DOI,文献DOI怎么找? 1791358
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803396