Microplastic-free, single-layered functional surface with localized liquid-discharging molecular channels for disposable hygiene products

卫生用品 自由面 化学工程 材料科学 纳米技术 化学 工程类 医学 机械 物理 病理
作者
Mei Liu,Ruimin Xie,Chi Ma,Jielin Xu,Run Zhao,Lili Deng,Shiyan Chen,Jianping Yang,Liming Zou,Huaping Wang,Jing Wu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:494: 153145-153145 被引量:1
标识
DOI:10.1016/j.cej.2024.153145
摘要

Conventional disposable absorbent hygiene products (DAHPs) currently represent a significant type of solid waste in landfills and are a substantial producer of fiber-based microplastics. In this work, a novel multifunctional cellulose nonwoven (CNW) is reported. The key structural design of this material was achieved by covalently grafting a naturally cycloheptatriene product namely hinokitiol and a silane covalent bridge, successfully transforming the original super hydrophilic substrate into a single-layered, multifunctional material with precisely designed liquid-discharging molecular channels and a tailored, sophisticated hydrophobic/hydrophilic distribution structure. This 3D structure perfectly mimics the conventional adhesive-bonded polyolefin/polyesters laminates comprising a top sheet and a liquid acquisition and distribution layer (ADL). The results of XPS and 1H NMR indicated the hinokitiol was successfully chemically bonded to the CNW surface. Compared with polyolefin or cotton substrates, the optimal CNW product (CNW-H-A-2) exhibits significantly improved long-term wearing comfort by minimizing the liquid strike-through time (by 26–27%), reducing wet-back amount (by 65–90%), and ensuring an outstanding air-permeability (3011 mm·s-1). Excellent antibacterial properties against Staphylococcus aureus (86.4%) and Escherichia coli (97.3%) were achieved due to the good preservation of the bioactive phenol groups of hinokitiol. Additionally, it can be completely enzymatically-degraded within 24 h. This strategy holds promise as a potential solution for mitigating fiber-based microplastics pollution of DAHPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研岗完成签到,获得积分10
刚刚
Vegeta完成签到 ,获得积分10
刚刚
英姑应助嘻嘻采纳,获得10
2秒前
呼呼呼发布了新的文献求助10
3秒前
默默的天德完成签到,获得积分20
4秒前
Jay完成签到,获得积分10
4秒前
爆米花应助greatsnow采纳,获得10
6秒前
上官若男应助小竹采纳,获得10
6秒前
8秒前
10秒前
12秒前
tina3058完成签到,获得积分10
13秒前
14秒前
大航完成签到,获得积分10
15秒前
桐桐应助ALUCK采纳,获得10
16秒前
瑾瑜发布了新的文献求助10
17秒前
18秒前
干辣椒完成签到 ,获得积分10
18秒前
Akim应助璐璐采纳,获得10
18秒前
ruiii完成签到,获得积分10
19秒前
大炮弹发布了新的文献求助10
19秒前
Sci完成签到,获得积分10
21秒前
liuzhen完成签到 ,获得积分10
22秒前
25秒前
虚心的飞飞完成签到,获得积分10
26秒前
26秒前
纯真的冰蓝完成签到 ,获得积分10
27秒前
阳佟天川完成签到,获得积分10
27秒前
美好灵寒完成签到,获得积分10
28秒前
29秒前
30秒前
Zzzzz发布了新的文献求助10
31秒前
黑粉头头发布了新的文献求助10
32秒前
mark2021完成签到,获得积分10
33秒前
34秒前
ccs发布了新的文献求助10
35秒前
芝士土拨鼠完成签到,获得积分10
37秒前
dnmd完成签到,获得积分10
38秒前
39秒前
40秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998407
求助须知:如何正确求助?哪些是违规求助? 2658903
关于积分的说明 7198485
捐赠科研通 2294450
什么是DOI,文献DOI怎么找? 1216676
科研通“疑难数据库(出版商)”最低求助积分说明 593594
版权声明 592904