Pathological Asymmetry-Guided Progressive Learning for Acute Ischemic Stroke Infarct Segmentation

病态的 医学 背景(考古学) 人工智能 判别式 杠杆(统计) 分割 深度学习 机器学习 计算机科学 模式识别(心理学) 病理 生物 古生物学
作者
J. Sun,Qiuxuan Li,Yuhao Liu,Yichuan Liu,Gouenou Coatrieux,Jean-Louis Coatrieux,Yang Chen,Jie Lu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3414842
摘要

Quantitative infarct estimation is crucial for diagnosis, treatment and prognosis in acute ischemic stroke (AIS) patients. As the early changes of ischemic tissue are subtle and easily confounded by normal brain tissue, it remains a very challenging task. However, existing methods often ignore or confuse the contribution of different types of anatomical asymmetry caused by intrinsic and pathological changes to segmentation. Further, inefficient domain knowledge utilization leads to mis-segmentation for AIS infarcts. Inspired by this idea, we propose a pathological asymmetry-guided progressive learning (PAPL) method for AIS infarct segmentation. PAPL mimics the step-by-step learning patterns observed in humans, including three progressive stages: knowledge preparation stage, formal learning stage, and examination improvement stage. First, knowledge preparation stage accumulates the preparatory domain knowledge of the infarct segmentation task, helping to learn domain-specific knowledge representations to enhance the discriminative ability for pathological asymmetries by constructed contrastive learning task. Then, formal learning stage efficiently performs end-to-end training guided by learned knowledge representations, in which the designed feature compensation module (FCM) can leverage the anatomy similarity between adjacent slices from the volumetric medical image to help aggregate rich anatomical context information. Finally, examination improvement stage encourages improving the infarct prediction from the previous stage, where the proposed perception refinement strategy (RPRS) further exploits the bilateral difference comparison to correct the mis-segmentation infarct regions by adaptively regional shrink and expansion. Extensive experiments on public and in-house NCCT datasets demonstrated the superiority of the proposed PAPL, which is promising to help better stroke evaluation and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助mookie采纳,获得10
刚刚
SciGPT应助mahuahua采纳,获得10
1秒前
1秒前
英俊的铭应助霍师傅采纳,获得10
2秒前
蜡笔小新发布了新的文献求助10
2秒前
Owen应助cy采纳,获得10
2秒前
3秒前
5秒前
5秒前
5秒前
5秒前
6秒前
严好香完成签到 ,获得积分10
6秒前
6秒前
7秒前
长度2到发布了新的文献求助10
8秒前
8秒前
hyman1218发布了新的文献求助50
8秒前
君子扑火完成签到,获得积分10
8秒前
淡定的勒完成签到,获得积分10
9秒前
9秒前
浅笑_随风发布了新的文献求助10
9秒前
yinzenglinnn发布了新的文献求助10
9秒前
9秒前
zhangguo发布了新的文献求助100
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
李健应助完美平灵采纳,获得10
10秒前
10秒前
10秒前
打打应助konoraha采纳,获得10
10秒前
neufy发布了新的文献求助10
10秒前
nighwalk发布了新的文献求助10
11秒前
豌豆射手发布了新的文献求助10
11秒前
11秒前
12秒前
caocao发布了新的文献求助10
12秒前
孤独的远山完成签到,获得积分10
12秒前
缓慢千易完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515