Pathological Asymmetry-Guided Progressive Learning for Acute Ischemic Stroke Infarct Segmentation

病态的 医学 背景(考古学) 人工智能 判别式 杠杆(统计) 分割 深度学习 机器学习 计算机科学 模式识别(心理学) 病理 生物 古生物学
作者
J. Sun,Qiuxuan Li,Yuhao Liu,Yichuan Liu,Gouenou Coatrieux,Jean-Louis Coatrieux,Yang Chen,Jie Lu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3414842
摘要

Quantitative infarct estimation is crucial for diagnosis, treatment and prognosis in acute ischemic stroke (AIS) patients. As the early changes of ischemic tissue are subtle and easily confounded by normal brain tissue, it remains a very challenging task. However, existing methods often ignore or confuse the contribution of different types of anatomical asymmetry caused by intrinsic and pathological changes to segmentation. Further, inefficient domain knowledge utilization leads to mis-segmentation for AIS infarcts. Inspired by this idea, we propose a pathological asymmetry-guided progressive learning (PAPL) method for AIS infarct segmentation. PAPL mimics the step-by-step learning patterns observed in humans, including three progressive stages: knowledge preparation stage, formal learning stage, and examination improvement stage. First, knowledge preparation stage accumulates the preparatory domain knowledge of the infarct segmentation task, helping to learn domain-specific knowledge representations to enhance the discriminative ability for pathological asymmetries by constructed contrastive learning task. Then, formal learning stage efficiently performs end-to-end training guided by learned knowledge representations, in which the designed feature compensation module (FCM) can leverage the anatomy similarity between adjacent slices from the volumetric medical image to help aggregate rich anatomical context information. Finally, examination improvement stage encourages improving the infarct prediction from the previous stage, where the proposed perception refinement strategy (RPRS) further exploits the bilateral difference comparison to correct the mis-segmentation infarct regions by adaptively regional shrink and expansion. Extensive experiments on public and in-house NCCT datasets demonstrated the superiority of the proposed PAPL, which is promising to help better stroke evaluation and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gakay完成签到,获得积分10
刚刚
yuhang完成签到,获得积分10
1秒前
xxxx发布了新的文献求助10
2秒前
2秒前
tut完成签到 ,获得积分10
3秒前
coolru完成签到,获得积分10
3秒前
满家归寻发布了新的文献求助10
3秒前
3秒前
Riggle G完成签到,获得积分10
4秒前
日月小完成签到,获得积分10
4秒前
vv1223完成签到,获得积分10
4秒前
未明的感觉完成签到,获得积分10
4秒前
Mint完成签到 ,获得积分10
5秒前
5秒前
小明完成签到,获得积分10
5秒前
HH完成签到,获得积分10
6秒前
MouLi完成签到,获得积分10
6秒前
酷波er应助Jere采纳,获得10
6秒前
清风完成签到 ,获得积分10
7秒前
鲸鱼打滚完成签到 ,获得积分10
7秒前
暴躁的语堂完成签到,获得积分10
7秒前
7秒前
7秒前
光亮西牛完成签到 ,获得积分10
7秒前
Doctor_Peng完成签到,获得积分10
8秒前
zoey完成签到,获得积分10
8秒前
pb完成签到,获得积分10
8秒前
sunny完成签到 ,获得积分10
8秒前
9秒前
yugy完成签到,获得积分10
9秒前
烂漫明轩完成签到,获得积分10
9秒前
jingmishensi发布了新的文献求助10
9秒前
科研通AI6应助新手采纳,获得10
10秒前
liuzhong完成签到,获得积分10
11秒前
kingwill发布了新的文献求助30
11秒前
HanruiWang完成签到,获得积分10
12秒前
可爱的函函应助琳宝贝采纳,获得10
12秒前
科研通AI6应助zyx采纳,获得10
13秒前
帆帆帆发布了新的文献求助10
13秒前
痞子毛应助Qinghua采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568452
求助须知:如何正确求助?哪些是违规求助? 4653069
关于积分的说明 14703693
捐赠科研通 4594883
什么是DOI,文献DOI怎么找? 2521327
邀请新用户注册赠送积分活动 1492973
关于科研通互助平台的介绍 1463778