Pathological Asymmetry-Guided Progressive Learning for Acute Ischemic Stroke Infarct Segmentation

病态的 医学 冲程(发动机) 人工智能 梗塞 分割 缺血性中风 急性中风 心脏病学 放射科 缺血 计算机科学 内科学 心肌梗塞 机械工程 组织纤溶酶原激活剂 工程类
作者
J. Sun,Qiuxuan Li,Yuhao Liu,Yichuan Liu,Gouenou Coatrieux,Jean-Louis Coatrieux,Yang Chen,Jie Lu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3414842
摘要

Quantitative infarct estimation is crucial for diagnosis, treatment and prognosis in acute ischemic stroke (AIS) patients. As the early changes of ischemic tissue are subtle and easily confounded by normal brain tissue, it remains a very challenging task. However, existing methods often ignore or confuse the contribution of different types of anatomical asymmetry caused by intrinsic and pathological changes to segmentation. Further, inefficient domain knowledge utilization leads to mis-segmentation for AIS infarcts. Inspired by this idea, we propose a pathological asymmetry-guided progressive learning (PAPL) method for AIS infarct segmentation. PAPL mimics the step-by-step learning patterns observed in humans, including three progressive stages: knowledge preparation stage, formal learning stage, and examination improvement stage. First, knowledge preparation stage accumulates the preparatory domain knowledge of the infarct segmentation task, helping to learn domain-specific knowledge representations to enhance the discriminative ability for pathological asymmetries by constructed contrastive learning task. Then, formal learning stage efficiently performs end-to-end training guided by learned knowledge representations, in which the designed feature compensation module (FCM) can leverage the anatomy similarity between adjacent slices from the volumetric medical image to help aggregate rich anatomical context information. Finally, examination improvement stage encourages improving the infarct prediction from the previous stage, where the proposed perception refinement strategy (RPRS) further exploits the bilateral difference comparison to correct the mis-segmentation infarct regions by adaptively regional shrink and expansion. Extensive experiments on public and in-house NCCT datasets demonstrated the superiority of the proposed PAPL, which is promising to help better stroke evaluation and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵花生完成签到,获得积分10
1秒前
3秒前
5秒前
6秒前
逯阿哲发布了新的文献求助30
8秒前
修仙应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
9秒前
修仙应助科研通管家采纳,获得10
9秒前
10秒前
wanci应助直走不回头采纳,获得20
10秒前
ttttb发布了新的文献求助10
10秒前
loong完成签到,获得积分10
11秒前
xiaomaidou完成签到,获得积分10
13秒前
hu发布了新的文献求助10
15秒前
15秒前
云淡风轻应助薯片采纳,获得20
15秒前
研友_VZG7GZ应助ttttb采纳,获得10
17秒前
麦兜发布了新的文献求助10
19秒前
whatever应助Jeffrey采纳,获得20
20秒前
21秒前
科研混混完成签到,获得积分10
21秒前
22秒前
大模型应助盼盼采纳,获得10
23秒前
醉熏的凝莲完成签到,获得积分10
24秒前
26秒前
huiwanfeifei发布了新的文献求助10
26秒前
zpj完成签到 ,获得积分10
28秒前
李雪慧发布了新的文献求助10
29秒前
29秒前
29秒前
30秒前
rosalieshi应助邵辛采纳,获得50
31秒前
xide发布了新的文献求助30
33秒前
慕青应助快乐友易采纳,获得10
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919