清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

RNA-Seq Data Analysis

计算生物学 生物 计算机科学
作者
James Li,Rency S Varghese,Habtom W Ressom
出处
期刊:Methods in molecular biology 卷期号:: 263-290
标识
DOI:10.1007/978-1-0716-3918-4_18
摘要

RNA-Seq data analysis stands as a vital part of genomics research, turning vast and complex datasets into meaningful biological insights. It is a field marked by rapid evolution and ongoing innovation, necessitating a thorough understanding for anyone seeking to unlock the potential of RNA-Seq data. In this chapter, we describe the intricate landscape of RNA-seq data analysis, elucidating a comprehensive pipeline that navigates through the entirety of this complex process. Beginning with quality control, the chapter underscores the paramount importance of ensuring the integrity of RNA-seq data, as it lays the groundwork for subsequent analyses. Preprocessing is then addressed, where the raw sequence data undergoes necessary modifications and enhancements, setting the stage for the alignment phase. This phase involves mapping the processed sequences to a reference genome, a step pivotal for decoding the origins and functions of these sequences.Venturing into the heart of RNA-seq analysis, the chapter then explores differential expression analysis-the process of identifying genes that exhibit varying expression levels across different conditions or sample groups. Recognizing the biological context of these differentially expressed genes is pivotal; hence, the chapter transitions into functional analysis. Here, methods and tools like Gene Ontology and pathway analyses help contextualize the roles and interactions of the identified genes within broader biological frameworks. However, the chapter does not stop at conventional analysis methods. Embracing the evolving paradigms of data science, it delves into machine learning applications for RNA-seq data, introducing advanced techniques in dimension reduction and both unsupervised and supervised learning. These approaches allow for patterns and relationships to be discerned in the data that might be imperceptible through traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
莫友安完成签到 ,获得积分10
36秒前
完美世界应助科研通管家采纳,获得10
39秒前
秋夜临完成签到,获得积分10
42秒前
yaoyaner完成签到 ,获得积分10
46秒前
思源应助帮帮我好吗采纳,获得10
56秒前
Serendiply完成签到,获得积分10
1分钟前
白白嫩嫩完成签到,获得积分10
1分钟前
HHM驳回了大模型应助
1分钟前
shikaly完成签到,获得积分0
1分钟前
小强完成签到 ,获得积分10
1分钟前
堇笙vv完成签到,获得积分0
1分钟前
yujie完成签到 ,获得积分10
2分钟前
2分钟前
CC完成签到,获得积分0
2分钟前
2分钟前
2分钟前
lll发布了新的文献求助10
2分钟前
雪花完成签到 ,获得积分10
3分钟前
今后应助颖宝老公采纳,获得10
3分钟前
madison完成签到 ,获得积分10
3分钟前
cai白白完成签到,获得积分0
3分钟前
kmzzy完成签到,获得积分10
3分钟前
HHM完成签到,获得积分10
3分钟前
简单幸福完成签到 ,获得积分10
3分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
3分钟前
谭凯文完成签到 ,获得积分10
4分钟前
小猴子完成签到 ,获得积分10
4分钟前
科研通AI2S应助Drwenlu采纳,获得10
4分钟前
orixero应助gr采纳,获得10
4分钟前
4分钟前
gr发布了新的文献求助10
4分钟前
Singularity应助帮帮我好吗采纳,获得10
4分钟前
Kevin完成签到,获得积分10
4分钟前
violetlishu完成签到 ,获得积分10
5分钟前
无悔完成签到 ,获得积分10
6分钟前
6分钟前
颖宝老公发布了新的文献求助10
6分钟前
Singularity应助帮帮我好吗采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999