Modified Dung Beetle Optimizer with Multi-strategy for Uncertain Multi-modal Transport Path Problem

情态动词 路径(计算) 粪甲虫 数学优化 计算机科学 数学 材料科学 生态学 生物 高分子化学 程序设计语言 金龟子科
作者
Jiang Wu,Qifang Luo,Yongquan Zhou
出处
期刊:Journal of Computational Design and Engineering [Oxford University Press]
卷期号:11 (4): 40-72 被引量:2
标识
DOI:10.1093/jcde/qwae058
摘要

Abstract Uncertain multi-modal transport path optimization (UMTPO) is a combined optimization non-deterministic polynomial-time hard problem. Its goal is to determine a path with the lowest total transportation cost and carbon emissions from the starting point to the destination. To effectively address this issue, this article proposes a modified dung beetle optimizer (DBO) to address it. DBO is a swarm-based metaheuristic optimization algorithm that has the features of a fast convergence rate and high solution accuracy. Despite this, the disadvantages of weak global exploration capability and falling easily into local optima exist. In this article, we propose a modified DBO called MSHDBO for function optimization and to solve the UMTPO problem. However, for the vast majority of metaheuristic algorithms, they are designed for continuous problems and cannot directly solve discrete problems. Therefore, this article employs a priority based encoding and decoding method to solve the UMTPO problem. To verify the performance and effectiveness of the MSHDBO algorithm, we compared it with other improved versions of the DBO algorithm used in the literature. We confirmed the excellent performance of MSHDBO using 41 benchmark test functions from the IEEE CEC 2017 test suite and IEEE CEC 2022 test suite. Additionally, we compared the MSHDBO algorithm with 10 other state-of-the-art metaheuristic optimization algorithms through a practical UMTPO problem. The experimental results indicated that the MSHDBO algorithm achieved very good performance when solving the UMTPO problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDDuan发布了新的文献求助10
1秒前
苹果小玉发布了新的文献求助10
2秒前
2秒前
3秒前
天真友易发布了新的文献求助10
3秒前
3秒前
4秒前
无私的紊完成签到,获得积分10
5秒前
zzzzzzy发布了新的文献求助10
6秒前
7秒前
青柠发布了新的文献求助10
7秒前
无花果应助666采纳,获得10
7秒前
8秒前
雨水发布了新的文献求助10
8秒前
高大绝义发布了新的文献求助10
9秒前
打打应助会武功的阿吉采纳,获得10
9秒前
姜冬菇完成签到,获得积分10
10秒前
咕咕完成签到,获得积分10
10秒前
10秒前
脑洞疼应助mianmianyu采纳,获得10
10秒前
彭于晏应助Z先生采纳,获得10
11秒前
一程发布了新的文献求助10
11秒前
11秒前
闪闪谷槐发布了新的文献求助10
11秒前
守墓人完成签到 ,获得积分10
12秒前
核桃应助独特的平安采纳,获得10
12秒前
CodeCraft应助独特的平安采纳,获得10
12秒前
大个应助cr7采纳,获得10
13秒前
Hedy发布了新的文献求助10
14秒前
轻松盼雁完成签到,获得积分10
15秒前
shea发布了新的文献求助10
15秒前
16秒前
AYQ发布了新的文献求助10
19秒前
天天快乐应助夏冉采纳,获得10
20秒前
20秒前
20秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350