Robust Tensor Subspace Learning for Incomplete Multi-View Clustering

计算机科学 聚类分析 子空间拓扑 人工智能 张量(固有定义) 数据挖掘 数学 纯数学
作者
Cheng Liang,Daoyuan Wang,Huaxiang Zhang,Shichao Zhang,Fei Guo
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 6934-6948 被引量:5
标识
DOI:10.1109/tkde.2024.3399707
摘要

Incomplete multi-view clustering has represented a significant role in grouping real images. In this study, a novel robust tensor subspace learning (RTSL) is proposed for incomplete multi-view clustering. Specifically, the missing samples within views are first recovered by matrix factorization. The recovered information is utilized for latent representations learning. And then, the obtained latent representations are organized from all views into a third-order tensor and the intrinsic sample relations are captured with tensor linear representation. Moreover, a low-rank sample coefficient tensor is sought to capture high-order connections among views by imposing the tensor nuclear norm. Compared with traditional learning paradigms in the vector space, the sample relations within each view as well as across views could be preserved with the aid of robust tensor subspace learning. As a result, our model can simultaneously handle the missing samples and exploit the intrinsic correlations, leading to enhanced representation capability and better quality of the recovered data. We design an efficient iterative optimization strategy to solve the proposed method. Experimental results on eight datasets show that our model outperforms other competing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
南风应助勤劳的白晴采纳,获得30
2秒前
3秒前
李思超发布了新的文献求助30
3秒前
3秒前
3秒前
alden发布了新的文献求助30
4秒前
杳鸢应助阔达的初夏采纳,获得10
4秒前
DrKe完成签到,获得积分10
5秒前
楠薏发布了新的文献求助10
6秒前
7秒前
鑫鑫发布了新的文献求助10
7秒前
old发布了新的文献求助20
11秒前
正好发布了新的文献求助10
11秒前
搜集达人应助书记采纳,获得10
11秒前
木鱼完成签到 ,获得积分10
11秒前
11秒前
西安浴日光能赵炜完成签到,获得积分10
12秒前
寿寿兽兽SS瘦关注了科研通微信公众号
13秒前
我超凶的发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
冷静的奇迹完成签到,获得积分10
15秒前
16秒前
鑫鑫完成签到,获得积分10
17秒前
hbc发布了新的文献求助10
18秒前
shelemi发布了新的文献求助10
18秒前
19秒前
11011发布了新的文献求助10
19秒前
19秒前
11发布了新的文献求助10
20秒前
21秒前
CodeCraft应助kk采纳,获得10
21秒前
21秒前
laixiaohui发布了新的文献求助10
22秒前
22秒前
22秒前
hahaer发布了新的文献求助10
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391195
求助须知:如何正确求助?哪些是违规求助? 3002487
关于积分的说明 8804027
捐赠科研通 2689080
什么是DOI,文献DOI怎么找? 1472865
科研通“疑难数据库(出版商)”最低求助积分说明 681265
邀请新用户注册赠送积分活动 674109