A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale

纳米压痕 凝聚力(化学) 材料科学 缩进 长石 弹性模量 云母 摩擦角 复合材料 石英 模数 材料性能 岩土工程 地质学 物理 量子力学
作者
Qing Lü,Shihao Liu,Wei-ze Mao,Yang Yu,Xu Long
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:169: 106175-106175 被引量:13
标识
DOI:10.1016/j.compgeo.2024.106175
摘要

Rock is a heterogeneous material composed of multiple minerals, whose microscopic mechanical properties have a significant impact on the macroscopic mechanical properties of rocks. The elastic modulus and hardness of minerals could be measured by nanoindentation tests. However, determination of shear strength parameters (e.g., the cohesion and friction angle) of minerals in nanoscale is still a challenging work. In this paper, an elasto-plastic numerical model with Drucker-Prager failure criterion is established to simulate the nanoindentation tests. Uniform design is adopted to generate typical input parameters (e.g., elastic modulus, cohesion and friction angle) for the numerical model, by which the indentation load-penetration depth curve (P-h curve) corresponding to the typical input parameters are calculated. The artificial neural network (ANN) is trained to quantify the relationship between the input parameters and the P-h curve with high efficiency and accuracy. With a proposed optimization algorithm, the optimal input parameters such as the cohesion and friction angle, that achieve the minimum error between the simulated P-h curve by the ANN and the measured P-h curve by nanoindentation tests, could be determined. The proposed method is applied to determine the cohesions and friction angles of quartz, feldspar, and mica in granite. The results show that quartz exhibits the highest mechanical strength among the three minerals, and mica shows a greater discreteness. The results of this study will provide an effective method to obtain the microscopic mechanical properties of minerals and help to study the macroscopic mechanical properties of rock from microscopic perspective in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
故意的鼠标完成签到,获得积分10
刚刚
ccc完成签到 ,获得积分10
刚刚
1秒前
阿佳great发布了新的文献求助30
1秒前
zzzz发布了新的文献求助10
1秒前
深情安青应助无语的EP管采纳,获得10
1秒前
zycchris发布了新的文献求助10
2秒前
酷波er应助胖虎采纳,获得10
2秒前
情怀应助YY采纳,获得10
2秒前
斯文败类应助ikun采纳,获得10
2秒前
冷酷以太发布了新的文献求助10
2秒前
2秒前
2秒前
uppercrusteve完成签到,获得积分10
3秒前
3秒前
Syzhou发布了新的文献求助10
3秒前
雍雍完成签到 ,获得积分10
3秒前
CC发布了新的文献求助10
3秒前
传奇3应助爆螺钉采纳,获得10
3秒前
苹果乘风完成签到,获得积分10
5秒前
5秒前
梅竹发布了新的文献求助10
5秒前
5秒前
王星星发布了新的文献求助10
5秒前
伽娜发布了新的文献求助10
6秒前
6秒前
家的温暖发布了新的文献求助10
6秒前
qiuxiali123完成签到,获得积分20
6秒前
qwe123发布了新的文献求助10
6秒前
近代发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
weiwei1991完成签到,获得积分10
8秒前
8秒前
小马甲应助饼干采纳,获得10
8秒前
周周发布了新的文献求助10
9秒前
10秒前
OeO完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647752
求助须知:如何正确求助?哪些是违规求助? 4774203
关于积分的说明 15041173
捐赠科研通 4806669
什么是DOI,文献DOI怎么找? 2570374
邀请新用户注册赠送积分活动 1527179
关于科研通互助平台的介绍 1486224