A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale

纳米压痕 凝聚力(化学) 材料科学 缩进 长石 弹性模量 云母 摩擦角 复合材料 石英 模数 材料性能 岩土工程 地质学 物理 量子力学
作者
Qing Lü,Shihao Liu,Wei-ze Mao,Yang Yu,Xu Long
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:169: 106175-106175 被引量:13
标识
DOI:10.1016/j.compgeo.2024.106175
摘要

Rock is a heterogeneous material composed of multiple minerals, whose microscopic mechanical properties have a significant impact on the macroscopic mechanical properties of rocks. The elastic modulus and hardness of minerals could be measured by nanoindentation tests. However, determination of shear strength parameters (e.g., the cohesion and friction angle) of minerals in nanoscale is still a challenging work. In this paper, an elasto-plastic numerical model with Drucker-Prager failure criterion is established to simulate the nanoindentation tests. Uniform design is adopted to generate typical input parameters (e.g., elastic modulus, cohesion and friction angle) for the numerical model, by which the indentation load-penetration depth curve (P-h curve) corresponding to the typical input parameters are calculated. The artificial neural network (ANN) is trained to quantify the relationship between the input parameters and the P-h curve with high efficiency and accuracy. With a proposed optimization algorithm, the optimal input parameters such as the cohesion and friction angle, that achieve the minimum error between the simulated P-h curve by the ANN and the measured P-h curve by nanoindentation tests, could be determined. The proposed method is applied to determine the cohesions and friction angles of quartz, feldspar, and mica in granite. The results show that quartz exhibits the highest mechanical strength among the three minerals, and mica shows a greater discreteness. The results of this study will provide an effective method to obtain the microscopic mechanical properties of minerals and help to study the macroscopic mechanical properties of rock from microscopic perspective in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhh完成签到 ,获得积分10
刚刚
甜味拾荒者完成签到,获得积分10
2秒前
小二郎应助BONBON采纳,获得10
2秒前
3秒前
charllie完成签到 ,获得积分10
3秒前
空禅yew完成签到,获得积分10
4秒前
坚强亦丝应助跳跃采纳,获得10
6秒前
英俊的铭应助cc采纳,获得10
6秒前
huangsan完成签到,获得积分10
6秒前
匹诺曹完成签到,获得积分10
6秒前
7秒前
华仔应助进取拼搏采纳,获得10
7秒前
8秒前
dingdong发布了新的文献求助10
8秒前
you完成签到 ,获得积分10
9秒前
qwf完成签到 ,获得积分10
9秒前
10秒前
万能图书馆应助一一采纳,获得10
10秒前
执着跳跳糖完成签到 ,获得积分10
11秒前
阳yang完成签到,获得积分10
11秒前
牛头人完成签到,获得积分10
11秒前
12秒前
Rrr发布了新的文献求助10
12秒前
13秒前
13秒前
serenity完成签到 ,获得积分10
13秒前
Benliu完成签到,获得积分10
13秒前
csq发布了新的文献求助10
14秒前
15秒前
Hello应助外向的醉易采纳,获得10
15秒前
DWWWDAADAD完成签到,获得积分10
18秒前
科研通AI5应助一天八杯水采纳,获得10
19秒前
杨大仙儿完成签到 ,获得积分10
19秒前
21秒前
坚强的广山应助木头人采纳,获得200
21秒前
嘻哈学习完成签到,获得积分10
21秒前
21秒前
21秒前
ying完成签到,获得积分10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808