A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale

纳米压痕 凝聚力(化学) 材料科学 缩进 长石 弹性模量 云母 摩擦角 复合材料 石英 模数 材料性能 岩土工程 地质学 物理 量子力学
作者
Qing Lü,Shihao Liu,Wei-ze Mao,Yang Yu,Xu Long
出处
期刊:Computers and Geotechnics [Elsevier BV]
卷期号:169: 106175-106175 被引量:13
标识
DOI:10.1016/j.compgeo.2024.106175
摘要

Rock is a heterogeneous material composed of multiple minerals, whose microscopic mechanical properties have a significant impact on the macroscopic mechanical properties of rocks. The elastic modulus and hardness of minerals could be measured by nanoindentation tests. However, determination of shear strength parameters (e.g., the cohesion and friction angle) of minerals in nanoscale is still a challenging work. In this paper, an elasto-plastic numerical model with Drucker-Prager failure criterion is established to simulate the nanoindentation tests. Uniform design is adopted to generate typical input parameters (e.g., elastic modulus, cohesion and friction angle) for the numerical model, by which the indentation load-penetration depth curve (P-h curve) corresponding to the typical input parameters are calculated. The artificial neural network (ANN) is trained to quantify the relationship between the input parameters and the P-h curve with high efficiency and accuracy. With a proposed optimization algorithm, the optimal input parameters such as the cohesion and friction angle, that achieve the minimum error between the simulated P-h curve by the ANN and the measured P-h curve by nanoindentation tests, could be determined. The proposed method is applied to determine the cohesions and friction angles of quartz, feldspar, and mica in granite. The results show that quartz exhibits the highest mechanical strength among the three minerals, and mica shows a greater discreteness. The results of this study will provide an effective method to obtain the microscopic mechanical properties of minerals and help to study the macroscopic mechanical properties of rock from microscopic perspective in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tcc完成签到 ,获得积分10
1秒前
SYLH应助Lxx采纳,获得10
1秒前
1秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
yancn发布了新的文献求助10
8秒前
有点小is完成签到 ,获得积分10
8秒前
松思发布了新的文献求助30
8秒前
9秒前
南涧居发布了新的文献求助20
13秒前
xh完成签到,获得积分10
14秒前
kysl发布了新的文献求助10
14秒前
15秒前
16秒前
张雷应助TING采纳,获得20
16秒前
17秒前
何敏娟发布了新的文献求助10
17秒前
20秒前
Mason发布了新的文献求助30
20秒前
21秒前
加速度发布了新的文献求助10
21秒前
王饼干发布了新的文献求助10
22秒前
22秒前
噗噗完成签到,获得积分10
22秒前
24秒前
24秒前
Raul发布了新的文献求助10
27秒前
28秒前
明明完成签到,获得积分10
28秒前
Yukangqian完成签到,获得积分20
28秒前
王饼干完成签到,获得积分10
29秒前
噗噗发布了新的文献求助10
31秒前
追三发布了新的文献求助10
31秒前
32秒前
li完成签到,获得积分10
33秒前
34秒前
Raul完成签到,获得积分20
34秒前
34秒前
35秒前
小马甲应助xn201120采纳,获得150
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976235
求助须知:如何正确求助?哪些是违规求助? 3520399
关于积分的说明 11203166
捐赠科研通 3256989
什么是DOI,文献DOI怎么找? 1798580
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516