A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale

纳米压痕 凝聚力(化学) 材料科学 缩进 长石 弹性模量 云母 摩擦角 复合材料 石英 模数 材料性能 岩土工程 地质学 物理 量子力学
作者
Qing Lü,Shihao Liu,Wei-ze Mao,Yang Yu,Xu Long
出处
期刊:Computers and Geotechnics [Elsevier BV]
卷期号:169: 106175-106175 被引量:13
标识
DOI:10.1016/j.compgeo.2024.106175
摘要

Rock is a heterogeneous material composed of multiple minerals, whose microscopic mechanical properties have a significant impact on the macroscopic mechanical properties of rocks. The elastic modulus and hardness of minerals could be measured by nanoindentation tests. However, determination of shear strength parameters (e.g., the cohesion and friction angle) of minerals in nanoscale is still a challenging work. In this paper, an elasto-plastic numerical model with Drucker-Prager failure criterion is established to simulate the nanoindentation tests. Uniform design is adopted to generate typical input parameters (e.g., elastic modulus, cohesion and friction angle) for the numerical model, by which the indentation load-penetration depth curve (P-h curve) corresponding to the typical input parameters are calculated. The artificial neural network (ANN) is trained to quantify the relationship between the input parameters and the P-h curve with high efficiency and accuracy. With a proposed optimization algorithm, the optimal input parameters such as the cohesion and friction angle, that achieve the minimum error between the simulated P-h curve by the ANN and the measured P-h curve by nanoindentation tests, could be determined. The proposed method is applied to determine the cohesions and friction angles of quartz, feldspar, and mica in granite. The results show that quartz exhibits the highest mechanical strength among the three minerals, and mica shows a greater discreteness. The results of this study will provide an effective method to obtain the microscopic mechanical properties of minerals and help to study the macroscopic mechanical properties of rock from microscopic perspective in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助春去春来采纳,获得30
刚刚
1秒前
小豆芽完成签到,获得积分10
1秒前
东日完成签到,获得积分10
3秒前
共享精神应助冷酷的猎豹采纳,获得10
3秒前
4秒前
李爱国应助muyi采纳,获得10
4秒前
IanYoung71完成签到,获得积分10
4秒前
yuu完成签到,获得积分10
5秒前
英姑应助玉洁采纳,获得10
6秒前
华仔应助WANGSONGLU采纳,获得10
6秒前
哥哥喜欢格格完成签到 ,获得积分10
6秒前
欢呼尔烟完成签到,获得积分10
6秒前
Yoh1220完成签到,获得积分10
6秒前
6秒前
angelinazh发布了新的文献求助10
6秒前
皇家火鸡完成签到,获得积分10
7秒前
9秒前
善学以致用应助o30采纳,获得10
10秒前
YamDaamCaa应助lyjj023采纳,获得30
10秒前
柴柴子完成签到,获得积分10
10秒前
天竹子发布了新的文献求助10
10秒前
李健应助啵清啵采纳,获得10
10秒前
小巧映之完成签到 ,获得积分10
11秒前
orixero应助奶油布丁采纳,获得10
11秒前
虚心蜗牛完成签到 ,获得积分10
11秒前
深情安青应助张佳明采纳,获得10
11秒前
12秒前
dypdyp应助感动的红酒采纳,获得10
12秒前
magic完成签到,获得积分10
12秒前
yoonkk完成签到,获得积分10
13秒前
lin应助啦啦咔嘞采纳,获得10
13秒前
周老八发布了新的文献求助10
13秒前
科研通AI2S应助lynn采纳,获得10
14秒前
默默发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
嘎嘎板正完成签到,获得积分10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836