A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale

纳米压痕 凝聚力(化学) 材料科学 缩进 长石 弹性模量 云母 摩擦角 复合材料 石英 模数 材料性能 岩土工程 地质学 物理 量子力学
作者
Qing Lü,Shihao Liu,Wei-ze Mao,Yang Yu,Xu Long
出处
期刊:Computers and Geotechnics [Elsevier BV]
卷期号:169: 106175-106175 被引量:13
标识
DOI:10.1016/j.compgeo.2024.106175
摘要

Rock is a heterogeneous material composed of multiple minerals, whose microscopic mechanical properties have a significant impact on the macroscopic mechanical properties of rocks. The elastic modulus and hardness of minerals could be measured by nanoindentation tests. However, determination of shear strength parameters (e.g., the cohesion and friction angle) of minerals in nanoscale is still a challenging work. In this paper, an elasto-plastic numerical model with Drucker-Prager failure criterion is established to simulate the nanoindentation tests. Uniform design is adopted to generate typical input parameters (e.g., elastic modulus, cohesion and friction angle) for the numerical model, by which the indentation load-penetration depth curve (P-h curve) corresponding to the typical input parameters are calculated. The artificial neural network (ANN) is trained to quantify the relationship between the input parameters and the P-h curve with high efficiency and accuracy. With a proposed optimization algorithm, the optimal input parameters such as the cohesion and friction angle, that achieve the minimum error between the simulated P-h curve by the ANN and the measured P-h curve by nanoindentation tests, could be determined. The proposed method is applied to determine the cohesions and friction angles of quartz, feldspar, and mica in granite. The results show that quartz exhibits the highest mechanical strength among the three minerals, and mica shows a greater discreteness. The results of this study will provide an effective method to obtain the microscopic mechanical properties of minerals and help to study the macroscopic mechanical properties of rock from microscopic perspective in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dormantparner发布了新的文献求助10
刚刚
1秒前
KouZL发布了新的文献求助30
1秒前
科研通AI6应助满家归寻采纳,获得10
1秒前
2秒前
一口气吃七碗饭完成签到 ,获得积分10
2秒前
2秒前
3秒前
科研通AI6应助朴实涵菡采纳,获得10
3秒前
3秒前
小马甲应助坚定茉莉采纳,获得10
4秒前
疯狂的晓山完成签到,获得积分10
4秒前
fanqinge完成签到,获得积分20
4秒前
4秒前
5秒前
斯文静竹发布了新的文献求助10
5秒前
小青椒应助xzy998采纳,获得30
5秒前
qzp关闭了qzp文献求助
5秒前
Xiaofeng发布了新的文献求助10
6秒前
lullaby完成签到,获得积分10
6秒前
6秒前
独孤幻月96应助嘻嘻采纳,获得10
7秒前
7秒前
胖肉肉完成签到,获得积分10
7秒前
7秒前
buta发布了新的文献求助10
7秒前
8秒前
milkmore发布了新的文献求助10
8秒前
8秒前
abner发布了新的文献求助10
8秒前
落后的道之完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
fanqinge发布了新的文献求助10
9秒前
充电宝应助粗心的浩然采纳,获得10
10秒前
胖肉肉发布了新的文献求助10
10秒前
深情的mewmew完成签到,获得积分10
10秒前
顺利的语风完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871