A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale

纳米压痕 凝聚力(化学) 材料科学 缩进 长石 弹性模量 云母 摩擦角 复合材料 石英 模数 材料性能 岩土工程 地质学 物理 量子力学
作者
Qing Lü,Shihao Liu,Wei-ze Mao,Yang Yu,Xu Long
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:169: 106175-106175 被引量:13
标识
DOI:10.1016/j.compgeo.2024.106175
摘要

Rock is a heterogeneous material composed of multiple minerals, whose microscopic mechanical properties have a significant impact on the macroscopic mechanical properties of rocks. The elastic modulus and hardness of minerals could be measured by nanoindentation tests. However, determination of shear strength parameters (e.g., the cohesion and friction angle) of minerals in nanoscale is still a challenging work. In this paper, an elasto-plastic numerical model with Drucker-Prager failure criterion is established to simulate the nanoindentation tests. Uniform design is adopted to generate typical input parameters (e.g., elastic modulus, cohesion and friction angle) for the numerical model, by which the indentation load-penetration depth curve (P-h curve) corresponding to the typical input parameters are calculated. The artificial neural network (ANN) is trained to quantify the relationship between the input parameters and the P-h curve with high efficiency and accuracy. With a proposed optimization algorithm, the optimal input parameters such as the cohesion and friction angle, that achieve the minimum error between the simulated P-h curve by the ANN and the measured P-h curve by nanoindentation tests, could be determined. The proposed method is applied to determine the cohesions and friction angles of quartz, feldspar, and mica in granite. The results show that quartz exhibits the highest mechanical strength among the three minerals, and mica shows a greater discreteness. The results of this study will provide an effective method to obtain the microscopic mechanical properties of minerals and help to study the macroscopic mechanical properties of rock from microscopic perspective in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
陌陌完成签到,获得积分10
1秒前
核动力驴完成签到,获得积分10
1秒前
renwoxing完成签到,获得积分10
1秒前
www完成签到,获得积分10
1秒前
努努力发布了新的文献求助10
2秒前
心灵美的大山完成签到,获得积分10
2秒前
上官若男应助章传杰采纳,获得10
2秒前
量子星尘发布了新的文献求助30
2秒前
2秒前
顾矜应助Natasha采纳,获得10
2秒前
cxc发布了新的文献求助50
2秒前
任超行发布了新的文献求助10
2秒前
木牛牛马完成签到,获得积分10
3秒前
4秒前
FashionBoy应助xin采纳,获得10
4秒前
要减肥小夏完成签到,获得积分10
4秒前
4秒前
英姑应助老迟到的百合采纳,获得10
4秒前
rei402完成签到,获得积分10
5秒前
826871896发布了新的文献求助10
5秒前
研友_VZG7GZ应助chenting采纳,获得50
5秒前
英吉利25发布了新的文献求助10
5秒前
咕噜噜发布了新的文献求助10
6秒前
6秒前
勤劳海豚关注了科研通微信公众号
6秒前
称心的初之完成签到,获得积分20
6秒前
华仔应助longer采纳,获得10
6秒前
木兮完成签到,获得积分10
7秒前
陈玉发布了新的文献求助10
7秒前
逗逗完成签到,获得积分10
7秒前
7秒前
雨雨应助是帆帆呀采纳,获得10
8秒前
JM完成签到,获得积分10
8秒前
大模型应助漂亮忆南采纳,获得10
8秒前
红叶发布了新的文献求助20
8秒前
8秒前
zzzy发布了新的文献求助10
9秒前
1224323完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994