Investigation of the link between first-order kinetic models of the in vitro digestion of native starches and the accompanying changes in their crystallinity and structure

结晶度 消化(炼金术) 体外 化学 化学工程 食品科学 生物化学 色谱法 结晶学 工程类
作者
Leonardo Ignazio MULARGIA,Elien Lemmens,Stijn Reyniers,Kurt Gebruers,Arno G.B. Wouters,Frederick J. Warren,Bart Goderis,Jan A. Delcour
出处
期刊:Carbohydrate Polymers [Elsevier]
卷期号:343: 122440-122440 被引量:1
标识
DOI:10.1016/j.carbpol.2024.122440
摘要

Starch is the main source of dietary energy for humans. In order to understand the mechanisms governing native starch in vitro digestion, digestion data for six starches [wheat, maize, (waxy) maize, rice, potato and pea] of different botanical sources were fitted with the most common first-order kinetic models, i.e. the single, sequential, parallel and combined models. Parallel and combined models provided the most accurate fits and showed that all starches studied except potato starch followed a biphasic in vitro digestion pattern. The biological relevance of the kinetic parameters was explored by determining changes in crystallinity and molecular structure of the undigested starch residues during in vitro digestion. While the crystallinity of the undigested potato starch residues did not change substantially, a respectively small and large decrease in their amylose content and chain length during in vitro digestion was observed, indicating that amylose was digested slightly preferentially over amylopectin in native starch. However, the molecular structure of the starch residues changed too slowly and/or only to an insufficient extent to relate it to the kinetic parameters of the digested fractions predicted by the models. Such parameters thus need to be interpreted with caution, as their biological relevance still needs to be proven.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
maox1aoxin应助科研通管家采纳,获得30
1秒前
无花果应助科研通管家采纳,获得10
2秒前
11完成签到,获得积分10
2秒前
2秒前
2秒前
时尚的书易给时尚的书易的求助进行了留言
2秒前
南北完成签到,获得积分10
3秒前
3秒前
3秒前
MADKAI发布了新的文献求助20
3秒前
xiaoli完成签到,获得积分10
4秒前
清浅完成签到,获得积分10
4秒前
赘婿应助深海soda采纳,获得10
4秒前
WJM完成签到,获得积分10
4秒前
小星星完成签到,获得积分10
4秒前
啵乐乐发布了新的文献求助10
4秒前
爆米花应助瘦瘦白昼采纳,获得10
4秒前
wintercyan发布了新的文献求助20
4秒前
大雁高飞出不胜寒完成签到,获得积分10
5秒前
PSCs发布了新的文献求助10
5秒前
QWJ完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
zxy完成签到,获得积分10
7秒前
sober完成签到,获得积分10
7秒前
7秒前
mmknnk完成签到,获得积分20
7秒前
cc2064完成签到 ,获得积分10
7秒前
调皮冰旋发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678