Efficient Project Scheduling with Autonomous Learning Opportunities

计算机科学 调度(生产过程) 运筹学 数学优化 数学
作者
Alessandro Hill,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0107
摘要

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant complications, due to the cyclic nature of the learning relations and their interference with the precedence network. We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced topological sorting algorithm. Learning opportunities are integrated, activated, and potentially deactivated in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate the challenges that arise in this setting, we first consider the special case where activities can learn from at most one other activity. Subsequently, we extend our approach to the general case that admits multiple learning opportunities. We show that our approaches guarantee the construction of an optimal solution in polynomial time. In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze the model behavior under various scenarios of learning intensity and learning opportunity. We demonstrate that significant project speedups can be obtained when proactively accounting for learning opportunities. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0107 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0107 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助苏谶采纳,获得10
刚刚
1秒前
遥远的救世主完成签到,获得积分10
2秒前
瘦瘦完成签到,获得积分10
4秒前
清爽乐菱应助1717采纳,获得30
4秒前
4秒前
lulu发布了新的文献求助10
6秒前
孝顺的觅风完成签到 ,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
小马过河应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
CipherSage应助小王采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
花花应助科研通管家采纳,获得10
8秒前
小二郎应助西子阳采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
8秒前
小马过河应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
9秒前
ding应助科研通管家采纳,获得10
9秒前
咖褐完成签到,获得积分10
10秒前
淡然依凝完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
fei8047发布了新的文献求助10
13秒前
16秒前
17秒前
17秒前
天天快乐应助zrc采纳,获得30
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061