Efficient Project Scheduling with Autonomous Learning Opportunities

计算机科学 调度(生产过程) 运筹学 数学优化 数学
作者
Alessandro Hill,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0107
摘要

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant complications, due to the cyclic nature of the learning relations and their interference with the precedence network. We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced topological sorting algorithm. Learning opportunities are integrated, activated, and potentially deactivated in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate the challenges that arise in this setting, we first consider the special case where activities can learn from at most one other activity. Subsequently, we extend our approach to the general case that admits multiple learning opportunities. We show that our approaches guarantee the construction of an optimal solution in polynomial time. In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze the model behavior under various scenarios of learning intensity and learning opportunity. We demonstrate that significant project speedups can be obtained when proactively accounting for learning opportunities. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0107 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0107 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixoii完成签到 ,获得积分10
2秒前
5秒前
枫糖叶落完成签到,获得积分10
5秒前
哈哈完成签到 ,获得积分10
6秒前
共享精神应助猪猪hero采纳,获得30
7秒前
9秒前
hui发布了新的文献求助10
10秒前
11秒前
光之霓裳完成签到 ,获得积分10
12秒前
科研废物完成签到 ,获得积分10
14秒前
电子屎壳郎完成签到 ,获得积分10
16秒前
hui完成签到,获得积分10
16秒前
17秒前
liujianxin发布了新的文献求助10
20秒前
小马甲应助hui采纳,获得10
21秒前
木子26年要毕业完成签到 ,获得积分10
22秒前
qiqiqiqiqi完成签到 ,获得积分10
22秒前
Camellia完成签到 ,获得积分10
22秒前
布蓝图完成签到 ,获得积分10
24秒前
笨蛋搞笑女完成签到 ,获得积分10
25秒前
学习完成签到 ,获得积分10
26秒前
沫荔完成签到 ,获得积分10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
fang应助科研通管家采纳,获得30
27秒前
27秒前
29秒前
Lrcx完成签到 ,获得积分10
31秒前
liujianxin发布了新的文献求助10
33秒前
蒋磊完成签到 ,获得积分10
38秒前
阿语完成签到 ,获得积分10
40秒前
杨玲完成签到 ,获得积分10
42秒前
小高完成签到 ,获得积分10
42秒前
zheng完成签到 ,获得积分10
44秒前
可靠的南露完成签到,获得积分10
44秒前
医学耗材完成签到 ,获得积分10
44秒前
JQKing发布了新的文献求助10
46秒前
黄紫红完成签到 ,获得积分10
51秒前
Archie完成签到,获得积分10
52秒前
CadoreK完成签到 ,获得积分10
54秒前
充电宝应助可靠的寒风采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304170
求助须知:如何正确求助?哪些是违规求助? 4450738
关于积分的说明 13849759
捐赠科研通 4337666
什么是DOI,文献DOI怎么找? 2381590
邀请新用户注册赠送积分活动 1376576
关于科研通互助平台的介绍 1343579