Efficient Project Scheduling with Autonomous Learning Opportunities

计算机科学 调度(生产过程) 运筹学 数学优化 数学
作者
Alessandro Hill,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0107
摘要

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant complications, due to the cyclic nature of the learning relations and their interference with the precedence network. We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced topological sorting algorithm. Learning opportunities are integrated, activated, and potentially deactivated in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate the challenges that arise in this setting, we first consider the special case where activities can learn from at most one other activity. Subsequently, we extend our approach to the general case that admits multiple learning opportunities. We show that our approaches guarantee the construction of an optimal solution in polynomial time. In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze the model behavior under various scenarios of learning intensity and learning opportunity. We demonstrate that significant project speedups can be obtained when proactively accounting for learning opportunities. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0107 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0107 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mikaqyan完成签到,获得积分10
刚刚
封小封完成签到,获得积分10
1秒前
缓慢的煎蛋完成签到,获得积分10
1秒前
高帅发布了新的文献求助10
2秒前
缘分完成签到,获得积分0
2秒前
苗条半雪完成签到 ,获得积分10
2秒前
lc发布了新的文献求助10
3秒前
欢喜板凳完成签到 ,获得积分0
3秒前
angelinazh完成签到,获得积分10
3秒前
Ashao完成签到,获得积分10
4秒前
Lynne发布了新的文献求助10
5秒前
阿巴阿巴完成签到,获得积分10
5秒前
sln完成签到,获得积分10
5秒前
lin发布了新的文献求助10
5秒前
小路完成签到,获得积分10
5秒前
toda_erica完成签到,获得积分10
7秒前
高山我梦完成签到,获得积分10
7秒前
一朵粉嫩的蘑菇完成签到,获得积分10
10秒前
直率的笑翠完成签到 ,获得积分10
10秒前
木木完成签到 ,获得积分10
10秒前
10秒前
五月拾旧完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
小张一心向上完成签到,获得积分10
12秒前
青葱鱼块完成签到 ,获得积分10
13秒前
jiuzhege完成签到 ,获得积分10
14秒前
zyx完成签到 ,获得积分10
15秒前
15秒前
desperate完成签到,获得积分10
16秒前
16秒前
怡然的姒完成签到,获得积分10
18秒前
宇称yu完成签到 ,获得积分10
18秒前
zzzxxxxxyyyyy完成签到 ,获得积分10
19秒前
xue完成签到 ,获得积分10
19秒前
儒雅路人完成签到,获得积分10
19秒前
旰旰旰完成签到,获得积分10
20秒前
玛卡巴卡完成签到 ,获得积分10
20秒前
mingshi完成签到,获得积分10
21秒前
123123发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516479
求助须知:如何正确求助?哪些是违规求助? 4609458
关于积分的说明 14515279
捐赠科研通 4546103
什么是DOI,文献DOI怎么找? 2491101
邀请新用户注册赠送积分活动 1472853
关于科研通互助平台的介绍 1444788