Efficient Project Scheduling with Autonomous Learning Opportunities

计算机科学 调度(生产过程) 运筹学 数学优化 数学
作者
Alessandro Hill,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0107
摘要

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant complications, due to the cyclic nature of the learning relations and their interference with the precedence network. We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced topological sorting algorithm. Learning opportunities are integrated, activated, and potentially deactivated in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate the challenges that arise in this setting, we first consider the special case where activities can learn from at most one other activity. Subsequently, we extend our approach to the general case that admits multiple learning opportunities. We show that our approaches guarantee the construction of an optimal solution in polynomial time. In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze the model behavior under various scenarios of learning intensity and learning opportunity. We demonstrate that significant project speedups can be obtained when proactively accounting for learning opportunities. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0107 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0107 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空座位发布了新的文献求助10
刚刚
沉迷科研无法自拔完成签到,获得积分10
1秒前
1秒前
乐乐应助xuxu采纳,获得10
1秒前
常泽洋122完成签到,获得积分10
1秒前
一笑看尽长安花完成签到,获得积分10
1秒前
星辰大海应助h7nho采纳,获得10
1秒前
快乐的白秋应助学不懂数学采纳,获得100
2秒前
赘婿应助调皮的蓝天采纳,获得10
2秒前
2秒前
Orange应助李月采纳,获得100
2秒前
传奇3应助Luhh采纳,获得10
2秒前
万能图书馆应助图南采纳,获得10
2秒前
pj完成签到,获得积分10
2秒前
2秒前
KKKKKkkk完成签到,获得积分10
3秒前
zsj3787发布了新的文献求助10
3秒前
善学以致用应助VAPORX采纳,获得10
3秒前
孙扬发布了新的文献求助30
3秒前
细腻的伯云完成签到,获得积分10
4秒前
看看完成签到,获得积分10
4秒前
putao发布了新的文献求助10
4秒前
居里发布了新的文献求助10
5秒前
小蘑菇应助xuerui采纳,获得10
5秒前
一与余发布了新的文献求助10
5秒前
所所应助虚心的清采纳,获得10
5秒前
5秒前
852应助朝思暮想采纳,获得10
5秒前
mofan完成签到,获得积分10
5秒前
5秒前
在水一方应助空座位采纳,获得10
6秒前
6秒前
3333橙完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
lilx完成签到 ,获得积分10
8秒前
lulu发布了新的文献求助10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430202
求助须知:如何正确求助?哪些是违规求助? 4543438
关于积分的说明 14187210
捐赠科研通 4461576
什么是DOI,文献DOI怎么找? 2446244
邀请新用户注册赠送积分活动 1437490
关于科研通互助平台的介绍 1414381