亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Project Scheduling with Autonomous Learning Opportunities

计算机科学 调度(生产过程) 运筹学 数学优化 数学
作者
Alessandro Hill,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0107
摘要

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant complications, due to the cyclic nature of the learning relations and their interference with the precedence network. We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced topological sorting algorithm. Learning opportunities are integrated, activated, and potentially deactivated in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate the challenges that arise in this setting, we first consider the special case where activities can learn from at most one other activity. Subsequently, we extend our approach to the general case that admits multiple learning opportunities. We show that our approaches guarantee the construction of an optimal solution in polynomial time. In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze the model behavior under various scenarios of learning intensity and learning opportunity. We demonstrate that significant project speedups can be obtained when proactively accounting for learning opportunities. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0107 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0107 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
量子星尘发布了新的文献求助10
13秒前
徐per爱豆完成签到 ,获得积分10
13秒前
24秒前
渺渺未来星完成签到 ,获得积分20
35秒前
45秒前
可乐完成签到 ,获得积分20
46秒前
54秒前
1分钟前
Andrewlabeth完成签到,获得积分10
1分钟前
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
1分钟前
an慧儿发布了新的文献求助10
1分钟前
连安阳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
大方安白发布了新的文献求助10
1分钟前
大方安白完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
Lh发布了新的文献求助30
2分钟前
2分钟前
李依完成签到,获得积分10
2分钟前
Lh完成签到,获得积分10
2分钟前
3分钟前
3分钟前
明理丹烟发布了新的文献求助10
3分钟前
3分钟前
明理丹烟完成签到,获得积分10
3分钟前
3分钟前
金007发布了新的文献求助10
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
我要读博士完成签到 ,获得积分10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
3分钟前
Asofi完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509496
求助须知:如何正确求助?哪些是违规求助? 4604404
关于积分的说明 14489722
捐赠科研通 4539189
什么是DOI,文献DOI怎么找? 2487356
邀请新用户注册赠送积分活动 1469804
关于科研通互助平台的介绍 1442032