Efficient Project Scheduling with Autonomous Learning Opportunities

计算机科学 调度(生产过程) 运筹学 数学优化 数学
作者
Alessandro Hill,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0107
摘要

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant complications, due to the cyclic nature of the learning relations and their interference with the precedence network. We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced topological sorting algorithm. Learning opportunities are integrated, activated, and potentially deactivated in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate the challenges that arise in this setting, we first consider the special case where activities can learn from at most one other activity. Subsequently, we extend our approach to the general case that admits multiple learning opportunities. We show that our approaches guarantee the construction of an optimal solution in polynomial time. In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze the model behavior under various scenarios of learning intensity and learning opportunity. We demonstrate that significant project speedups can be obtained when proactively accounting for learning opportunities. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0107 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0107 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天真的宝马完成签到,获得积分10
刚刚
五十二完成签到,获得积分10
刚刚
Precious完成签到,获得积分10
刚刚
bkagyin应助思念是什么味道采纳,获得10
1秒前
1秒前
赘婿应助erhgbw采纳,获得10
1秒前
1秒前
苏格拉底的底牌完成签到,获得积分10
1秒前
李爱国应助默默襄采纳,获得10
1秒前
明亮梦山完成签到 ,获得积分10
2秒前
Akim应助Janmy采纳,获得10
2秒前
所所应助热心乐驹采纳,获得10
2秒前
2秒前
3秒前
MrZhou发布了新的文献求助10
3秒前
weiwenzuo完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
酶来研去完成签到,获得积分10
4秒前
搜集达人应助Wang采纳,获得30
4秒前
YMS_DAMAOMI发布了新的文献求助10
4秒前
weerfi完成签到,获得积分10
4秒前
C57的狂想发布了新的文献求助20
5秒前
LIU完成签到 ,获得积分10
6秒前
6秒前
順意完成签到,获得积分10
7秒前
Alexis发布了新的文献求助30
7秒前
阿牛奶完成签到,获得积分10
7秒前
why940312完成签到,获得积分10
8秒前
8秒前
8秒前
小山己几发布了新的文献求助10
8秒前
9秒前
9秒前
爱科研的纲完成签到,获得积分10
9秒前
wangzihao1995完成签到,获得积分10
10秒前
llllllll发布了新的文献求助10
10秒前
淡定的勒应助Sunny采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402461
求助须知:如何正确求助?哪些是违规求助? 4521103
关于积分的说明 14083816
捐赠科研通 4435114
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405445