Efficient Project Scheduling with Autonomous Learning Opportunities

计算机科学 调度(生产过程) 运筹学 数学优化 数学
作者
Alessandro Hill,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0107
摘要

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant complications, due to the cyclic nature of the learning relations and their interference with the precedence network. We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced topological sorting algorithm. Learning opportunities are integrated, activated, and potentially deactivated in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate the challenges that arise in this setting, we first consider the special case where activities can learn from at most one other activity. Subsequently, we extend our approach to the general case that admits multiple learning opportunities. We show that our approaches guarantee the construction of an optimal solution in polynomial time. In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze the model behavior under various scenarios of learning intensity and learning opportunity. We demonstrate that significant project speedups can be obtained when proactively accounting for learning opportunities. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0107 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0107 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dw发布了新的文献求助10
刚刚
菲菲发布了新的文献求助10
刚刚
1秒前
1秒前
小马甲应助又下涟漪小雨采纳,获得10
1秒前
浮游应助lm采纳,获得10
1秒前
LYF发布了新的文献求助10
1秒前
1秒前
所所应助hh采纳,获得30
1秒前
星星海完成签到,获得积分10
2秒前
深情安青应助Sci拖鞋采纳,获得10
2秒前
闪闪元芹发布了新的文献求助10
2秒前
hanmeige发布了新的文献求助10
2秒前
愤怒的勒发布了新的文献求助10
3秒前
purple完成签到,获得积分10
3秒前
我是老大应助漂流的飞星采纳,获得10
3秒前
科研通AI6应助陆lu采纳,获得10
4秒前
现代雁桃完成签到,获得积分10
4秒前
泡菜给泡菜的求助进行了留言
4秒前
香蕉觅云应助jzmupyj采纳,获得10
4秒前
烟花应助。。。采纳,获得10
4秒前
4秒前
在水一方应助hl采纳,获得10
5秒前
yylyh完成签到,获得积分10
6秒前
Akim应助直率的睫毛膏采纳,获得10
6秒前
李健的小迷弟应助阿谭采纳,获得10
7秒前
FashionBoy应助mysgmmdnz采纳,获得10
7秒前
酷慕儿完成签到,获得积分10
8秒前
鳌小饭完成签到 ,获得积分10
8秒前
现代雁桃发布了新的文献求助10
8秒前
8秒前
9秒前
fjn完成签到,获得积分10
9秒前
啦啦啦发布了新的文献求助10
9秒前
赘婿应助愤怒的勒采纳,获得10
10秒前
浮游应助没烦恼采纳,获得10
10秒前
科研通AI6应助结实的以莲采纳,获得10
10秒前
11秒前
传奇3应助Coco采纳,获得10
11秒前
jiangsuway发布了新的文献求助50
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435585
求助须知:如何正确求助?哪些是违规求助? 4547596
关于积分的说明 14209584
捐赠科研通 4467868
什么是DOI,文献DOI怎么找? 2448774
邀请新用户注册赠送积分活动 1439634
关于科研通互助平台的介绍 1416255