Efficient Project Scheduling with Autonomous Learning Opportunities

计算机科学 调度(生产过程) 运筹学 数学优化 数学
作者
Alessandro Hill,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0107
摘要

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant complications, due to the cyclic nature of the learning relations and their interference with the precedence network. We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced topological sorting algorithm. Learning opportunities are integrated, activated, and potentially deactivated in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate the challenges that arise in this setting, we first consider the special case where activities can learn from at most one other activity. Subsequently, we extend our approach to the general case that admits multiple learning opportunities. We show that our approaches guarantee the construction of an optimal solution in polynomial time. In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze the model behavior under various scenarios of learning intensity and learning opportunity. We demonstrate that significant project speedups can be obtained when proactively accounting for learning opportunities. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0107 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0107 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
合适的寄灵完成签到 ,获得积分10
11秒前
周晴完成签到 ,获得积分10
14秒前
睡觉王完成签到 ,获得积分10
17秒前
komisan完成签到 ,获得积分10
18秒前
nanfeng完成签到 ,获得积分10
22秒前
兔图图完成签到 ,获得积分10
28秒前
fogsea完成签到,获得积分0
31秒前
xzx完成签到 ,获得积分10
31秒前
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
JJ完成签到 ,获得积分10
37秒前
fengw420完成签到,获得积分10
37秒前
粗暴的坤完成签到 ,获得积分10
39秒前
Hiaoliem完成签到 ,获得积分10
41秒前
fay1987完成签到,获得积分10
42秒前
科研通AI2S应助fly采纳,获得10
59秒前
来一斤这种鱼完成签到 ,获得积分10
1分钟前
学术laji完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
学术laji发布了新的文献求助10
1分钟前
哼哼完成签到 ,获得积分10
1分钟前
qupei完成签到 ,获得积分10
1分钟前
林林完成签到,获得积分10
1分钟前
帅气天荷完成签到 ,获得积分10
1分钟前
Amikacin完成签到,获得积分10
1分钟前
xie完成签到 ,获得积分10
1分钟前
michaelvin完成签到,获得积分10
1分钟前
zyw完成签到 ,获得积分10
2分钟前
穆一手完成签到 ,获得积分10
2分钟前
小布完成签到 ,获得积分10
2分钟前
qianshu完成签到,获得积分10
2分钟前
科研人完成签到 ,获得积分10
2分钟前
荣格的小学生完成签到,获得积分10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
Tina完成签到 ,获得积分10
2分钟前
陈M雯完成签到 ,获得积分10
2分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164826
求助须知:如何正确求助?哪些是违规求助? 2815925
关于积分的说明 7910558
捐赠科研通 2475504
什么是DOI,文献DOI怎么找? 1318250
科研通“疑难数据库(出版商)”最低求助积分说明 632035
版权声明 602296