Structure-aware diffusion for low-dose CT imaging

计算机科学 先验概率 人工智能 生成模型 噪音(视频) 迭代重建 降噪 忠诚 推论 计算机视觉 生成语法 图像(数学) 模式识别(心理学) 算法 电信 贝叶斯概率
作者
Wenchao Du,Weizhi Du,Weizhi Du,Wenchao Du,Wenchao Du,Wenchao Du
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad5d47
摘要

Abstract Reducing the radiation dose leads to the X-ray computed tomography (CT) images suffering from heavy noise and artifacts, which inevitably interferes with the subsequent clinic diagnostic and analysis. Leading works have explored diffusion models for low-dose CT imaging to avoid the structure degeneration and blurring effects of previous deep denoising models. However, most of them always begin their generative processes with Gaussian noise, which has little or no structure priors of the clean data distribution, thereby leading to long-time inference and unpleasant reconstruction quality. To alleviate these problems, this paper presents a Structure-Aware Diffusion model (SAD), an end-to-end self-guided learning framework for high-fidelity CT image reconstruction. First, SAD builds a nonlinear diffusion bridge between clean and degraded data distributions, which could directly learn the implicit physical degradation prior from observed measurements. Second, SAD integrates the prompt learning mechanism and implicit neural representation into the diffusion process, where rich and diverse structure representations extracted by degraded inputs are exploited as prompts, which provides global and local structure priors, to guide CT image reconstruction. Finally, we devise an efficient self-guided diffusion architecture using an iterative updated strategy, which further refines structural prompts during each generative step to drive finer image reconstruction. Extensive experiments on AAPM-Mayo and LoDoPaB-CT datasets demonstrate that our SAD could achieve superior performance in terms of noise removal, structure preservation, and blind-dose generalization, with few generative steps, even one step only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
仁爱仙人掌完成签到,获得积分10
3秒前
ywang发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
ewqw关注了科研通微信公众号
6秒前
曦小蕊完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
奋斗灵波发布了新的文献求助10
8秒前
药学牛马发布了新的文献求助10
8秒前
8秒前
科研通AI5应助WZ0904采纳,获得10
9秒前
叶未晞yi发布了新的文献求助10
10秒前
ipeakkka发布了新的文献求助10
11秒前
Jzhang应助迷人的映雁采纳,获得10
11秒前
11秒前
zzz完成签到,获得积分10
12秒前
12秒前
小安发布了新的文献求助10
12秒前
13秒前
叶未晞yi完成签到,获得积分10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得30
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
kilig应助科研通管家采纳,获得10
16秒前
16秒前
华仔应助科研通管家采纳,获得30
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
博ge发布了新的文献求助10
18秒前
19秒前
葶儿发布了新的文献求助10
19秒前
hgcyp完成签到,获得积分10
24秒前
ysh完成签到,获得积分10
24秒前
24秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824