Structure-aware diffusion for low-dose CT imaging

计算机科学 先验概率 人工智能 生成模型 噪音(视频) 迭代重建 降噪 忠诚 推论 计算机视觉 生成语法 图像(数学) 模式识别(心理学) 算法 电信 贝叶斯概率
作者
Wenchao Du,Weizhi Du,Weizhi Du,Wenchao Du,Wenchao Du,Wenchao Du
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad5d47
摘要

Abstract Reducing the radiation dose leads to the X-ray computed tomography (CT) images suffering from heavy noise and artifacts, which inevitably interferes with the subsequent clinic diagnostic and analysis. Leading works have explored diffusion models for low-dose CT imaging to avoid the structure degeneration and blurring effects of previous deep denoising models. However, most of them always begin their generative processes with Gaussian noise, which has little or no structure priors of the clean data distribution, thereby leading to long-time inference and unpleasant reconstruction quality. To alleviate these problems, this paper presents a Structure-Aware Diffusion model (SAD), an end-to-end self-guided learning framework for high-fidelity CT image reconstruction. First, SAD builds a nonlinear diffusion bridge between clean and degraded data distributions, which could directly learn the implicit physical degradation prior from observed measurements. Second, SAD integrates the prompt learning mechanism and implicit neural representation into the diffusion process, where rich and diverse structure representations extracted by degraded inputs are exploited as prompts, which provides global and local structure priors, to guide CT image reconstruction. Finally, we devise an efficient self-guided diffusion architecture using an iterative updated strategy, which further refines structural prompts during each generative step to drive finer image reconstruction. Extensive experiments on AAPM-Mayo and LoDoPaB-CT datasets demonstrate that our SAD could achieve superior performance in terms of noise removal, structure preservation, and blind-dose generalization, with few generative steps, even one step only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
维拉帕米完成签到,获得积分10
2秒前
小小莫发布了新的文献求助10
2秒前
充电宝应助净净子采纳,获得10
2秒前
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
wsw111完成签到,获得积分10
2秒前
93完成签到,获得积分10
2秒前
科研通AI5应助SHENLE采纳,获得10
3秒前
3秒前
3秒前
磊大彪发布了新的文献求助10
4秒前
Leo完成签到,获得积分10
4秒前
xcz发布了新的文献求助10
4秒前
4秒前
吕玥函发布了新的文献求助10
4秒前
5秒前
5秒前
共享精神应助灵巧谷芹采纳,获得10
6秒前
冷酷尔琴发布了新的文献求助10
6秒前
丰富飞阳完成签到,获得积分10
6秒前
6秒前
7秒前
lxrong完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
菠菜蟹发布了新的文献求助10
7秒前
alexyang发布了新的文献求助10
7秒前
LIUDEHUA发布了新的文献求助10
8秒前
xiatl发布了新的文献求助20
8秒前
wangqinlei发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
李玉发布了新的文献求助10
9秒前
在水一方应助Llllll采纳,获得30
9秒前
9秒前
9秒前
9秒前
小何同学发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576564
求助须知:如何正确求助?哪些是违规求助? 3995786
关于积分的说明 12370127
捐赠科研通 3669784
什么是DOI,文献DOI怎么找? 2022420
邀请新用户注册赠送积分活动 1056472
科研通“疑难数据库(出版商)”最低求助积分说明 943675