Structure-aware diffusion for low-dose CT imaging

计算机科学 先验概率 人工智能 生成模型 噪音(视频) 迭代重建 降噪 忠诚 推论 计算机视觉 生成语法 图像(数学) 模式识别(心理学) 算法 电信 贝叶斯概率
作者
Wenchao Du,Huanhuan Cui,Linchao He,Hu Chen,Yi Zhang,Zhen Hong
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (15): 155008-155008 被引量:3
标识
DOI:10.1088/1361-6560/ad5d47
摘要

Abstract Reducing the radiation dose leads to the x-ray computed tomography (CT) images suffering from heavy noise and artifacts, which inevitably interferes with the subsequent clinic diagnostic and analysis. Leading works have explored diffusion models for low-dose CT imaging to avoid the structure degeneration and blurring effects of previous deep denoising models. However, most of them always begin their generative processes with Gaussian noise, which has little or no structure priors of the clean data distribution, thereby leading to long-time inference and unpleasant reconstruction quality. To alleviate these problems, this paper presents a Structure-Aware Diffusion model (SAD), an end-to-end self-guided learning framework for high-fidelity CT image reconstruction. First, SAD builds a nonlinear diffusion bridge between clean and degraded data distributions, which could directly learn the implicit physical degradation prior from observed measurements. Second, SAD integrates the prompt learning mechanism and implicit neural representation into the diffusion process, where rich and diverse structure representations extracted by degraded inputs are exploited as prompts, which provides global and local structure priors, to guide CT image reconstruction. Finally, we devise an efficient self-guided diffusion architecture using an iterative updated strategy, which further refines structural prompts during each generative step to drive finer image reconstruction. Extensive experiments on AAPM-Mayo and LoDoPaB-CT datasets demonstrate that our SAD could achieve superior performance in terms of noise removal, structure preservation, and blind-dose generalization, with few generative steps, even one step only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
fanghongjian发布了新的文献求助10
3秒前
3秒前
乐观的穆完成签到,获得积分10
4秒前
皮皮完成签到 ,获得积分10
5秒前
xiuru完成签到,获得积分20
5秒前
6秒前
6秒前
WWW发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
7秒前
可爱的函函应助迷失岛采纳,获得10
9秒前
10秒前
xiuru发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
奋斗的海豚完成签到 ,获得积分10
12秒前
13秒前
14秒前
15秒前
韭菜盒子发布了新的文献求助10
16秒前
hbb完成签到 ,获得积分10
16秒前
Lu完成签到,获得积分10
17秒前
yhe发布了新的文献求助10
21秒前
22秒前
Rue完成签到,获得积分10
22秒前
务实的如冬完成签到 ,获得积分10
22秒前
英姑应助乐观的穆采纳,获得10
22秒前
22秒前
丘比特应助Zyc采纳,获得10
23秒前
24秒前
1111完成签到,获得积分10
25秒前
26秒前
华仔应助魁梧的盼雁采纳,获得30
26秒前
所所应助惠小之采纳,获得10
26秒前
wayne发布了新的文献求助10
27秒前
28秒前
29秒前
lhhhh完成签到 ,获得积分10
30秒前
momo发布了新的文献求助10
30秒前
绿颜色完成签到 ,获得积分10
31秒前
fedehe发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044