已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation

计算机科学 分割 瓶颈 判别式 人工智能 计算复杂性理论 推论 图像分割 掷骰子 失败 模式识别(心理学) 算法 并行计算 数学 几何学 嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3377-3390 被引量:224
标识
DOI:10.1109/tmi.2024.3398728
摘要

Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老驴拉磨完成签到 ,获得积分10
刚刚
Ambition完成签到,获得积分10
1秒前
2秒前
2秒前
qingcahng发布了新的文献求助10
3秒前
yechangzhou完成签到,获得积分10
4秒前
Echopotter完成签到,获得积分10
7秒前
何大青发布了新的文献求助10
7秒前
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
lgq12697应助科研通管家采纳,获得10
9秒前
通天塔发布了新的文献求助10
11秒前
13秒前
13秒前
哑巴和喇叭完成签到 ,获得积分10
13秒前
清醒完成签到,获得积分10
13秒前
SciGPT应助Nature采纳,获得10
16秒前
18秒前
Amber发布了新的文献求助10
19秒前
liliAnh完成签到 ,获得积分10
20秒前
qingcahng完成签到,获得积分10
20秒前
牛得滑完成签到 ,获得积分10
23秒前
Amber完成签到,获得积分10
24秒前
25秒前
科目三应助顺利的秋天采纳,获得10
26秒前
欣喜的幻翠完成签到 ,获得积分10
27秒前
32秒前
Rdx发布了新的文献求助10
32秒前
柔弱河马发布了新的文献求助10
35秒前
Waris完成签到 ,获得积分10
35秒前
lanxingxie完成签到,获得积分10
36秒前
咸蛋黄巧克力完成签到,获得积分10
37秒前
xuanxuan完成签到 ,获得积分10
38秒前
38秒前
Ru完成签到 ,获得积分10
39秒前
彩色的沛白完成签到,获得积分10
42秒前
桐桐应助柔弱河马采纳,获得10
43秒前
666发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855050
关于积分的说明 15106557
捐赠科研通 4822312
什么是DOI,文献DOI怎么找? 2581389
邀请新用户注册赠送积分活动 1535540
关于科研通互助平台的介绍 1493787