UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation

计算机科学 分割 瓶颈 判别式 人工智能 计算复杂性理论 推论 图像分割 掷骰子 失败 模式识别(心理学) 算法 并行计算 数学 几何学 嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3377-3390 被引量:224
标识
DOI:10.1109/tmi.2024.3398728
摘要

Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助凡凡采纳,获得10
1秒前
传奇3应助尊敬的菠萝采纳,获得10
2秒前
5秒前
5秒前
ISLAND完成签到,获得积分20
6秒前
啊姜姜姜姜姜完成签到 ,获得积分10
8秒前
顾矜应助Natasha采纳,获得10
8秒前
nasa完成签到,获得积分10
9秒前
jackie able发布了新的文献求助10
9秒前
天天快乐应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
dudu应助科研通管家采纳,获得10
11秒前
dudu应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
蒹葭苍苍应助科研通管家采纳,获得10
11秒前
蒹葭苍苍应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得30
11秒前
Orange应助科研通管家采纳,获得30
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
LM给LM的求助进行了留言
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
Ky_Mac应助科研通管家采纳,获得30
12秒前
词不达意应助科研通管家采纳,获得10
12秒前
憨憨兔子发布了新的文献求助30
12秒前
12秒前
小郭子应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896