UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation

计算机科学 分割 瓶颈 判别式 人工智能 计算复杂性理论 推论 图像分割 掷骰子 失败 模式识别(心理学) 算法 并行计算 数学 几何学 嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3377-3390 被引量:25
标识
DOI:10.1109/tmi.2024.3398728
摘要

Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助关山月采纳,获得10
刚刚
姬妙花完成签到,获得积分10
1秒前
1秒前
七凌发布了新的文献求助10
3秒前
flora给Goblin的求助进行了留言
3秒前
香蕉觅云应助SQDHZJ采纳,获得10
4秒前
共享精神应助无限火龙果采纳,获得10
5秒前
6秒前
咖啡豆发布了新的文献求助10
7秒前
情怀应助苏满天采纳,获得10
7秒前
小油条完成签到,获得积分10
7秒前
8秒前
11秒前
11秒前
七凌完成签到,获得积分10
11秒前
14秒前
15秒前
16秒前
16秒前
爆米花应助Summer采纳,获得10
17秒前
SQDHZJ发布了新的文献求助10
19秒前
风吟完成签到,获得积分10
19秒前
上官若男应助姬妙花采纳,获得30
20秒前
武文信发布了新的文献求助10
21秒前
Yfreya发布了新的文献求助10
21秒前
21秒前
23秒前
fifty完成签到 ,获得积分10
24秒前
25秒前
25秒前
彩色的绣连应助SQDHZJ采纳,获得10
26秒前
26秒前
27秒前
29秒前
30秒前
宋晓蓝发布了新的文献求助10
30秒前
30秒前
ggg发布了新的文献求助10
31秒前
31秒前
追寻如豹发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161699
求助须知:如何正确求助?哪些是违规求助? 2812944
关于积分的说明 7897948
捐赠科研通 2471893
什么是DOI,文献DOI怎么找? 1316222
科研通“疑难数据库(出版商)”最低求助积分说明 631263
版权声明 602129