UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation

计算机科学 分割 瓶颈 判别式 人工智能 计算复杂性理论 推论 图像分割 掷骰子 失败 模式识别(心理学) 算法 并行计算 数学 几何学 嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3377-3390 被引量:224
标识
DOI:10.1109/tmi.2024.3398728
摘要

Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拾云发布了新的文献求助10
2秒前
3秒前
3秒前
小荔枝完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
852应助犹豫三问采纳,获得10
4秒前
代阿飞发布了新的文献求助10
5秒前
大力的涵柏完成签到,获得积分20
5秒前
5秒前
曾经小伙完成签到 ,获得积分10
7秒前
呆萌的鸿煊完成签到,获得积分10
7秒前
QQ完成签到,获得积分10
7秒前
Erin发布了新的文献求助10
7秒前
高访蕊关注了科研通微信公众号
7秒前
8秒前
Ava应助ee采纳,获得10
8秒前
argal发布了新的文献求助10
9秒前
9秒前
9秒前
Yfvonne完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
CNAxiaozhu7应助包容念文采纳,获得10
13秒前
狂野的静槐完成签到,获得积分10
14秒前
14秒前
15秒前
thchiang发布了新的文献求助10
16秒前
16秒前
科目三应助chall采纳,获得10
17秒前
自由的梦蕊完成签到,获得积分10
17秒前
cosy完成签到,获得积分10
18秒前
ee发布了新的文献求助10
18秒前
19秒前
笨笨如之完成签到 ,获得积分10
20秒前
20秒前
高访蕊发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707