计算机科学
分割
瓶颈
判别式
人工智能
计算复杂性理论
推论
图像分割
掷骰子
失败
模式识别(心理学)
算法
并行计算
数学
几何学
嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2024-05-09
卷期号:43 (9): 3377-3390
被引量:25
标识
DOI:10.1109/tmi.2024.3398728
摘要
Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
科研通智能强力驱动
Strongly Powered by AbleSci AI