已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation

计算机科学 分割 瓶颈 判别式 人工智能 计算复杂性理论 推论 图像分割 掷骰子 失败 模式识别(心理学) 算法 并行计算 数学 几何学 嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3377-3390 被引量:75
标识
DOI:10.1109/tmi.2024.3398728
摘要

Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助taoatao采纳,获得10
1秒前
2秒前
乐乱完成签到 ,获得积分10
3秒前
刮刮粉儿发布了新的文献求助10
8秒前
11秒前
青树柠檬完成签到 ,获得积分10
12秒前
才富郭完成签到 ,获得积分10
13秒前
wkjfh应助AAA房地产小王采纳,获得10
14秒前
14秒前
taoatao发布了新的文献求助10
18秒前
隐形的谷槐完成签到 ,获得积分10
18秒前
Dr.Who发布了新的文献求助10
19秒前
仓鼠球完成签到,获得积分10
20秒前
生动丑应助科研通管家采纳,获得10
21秒前
21秒前
852应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
充电宝应助Jasonjoey采纳,获得10
24秒前
眼睛大的胡萝卜完成签到 ,获得积分10
28秒前
WK完成签到,获得积分10
30秒前
Hi完成签到 ,获得积分10
37秒前
yx_cheng应助读书的时候采纳,获得10
41秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
42秒前
悦耳的树叶完成签到 ,获得积分10
47秒前
lizigongzhu完成签到,获得积分10
48秒前
无心的秋珊完成签到 ,获得积分10
54秒前
归尘应助taoatao采纳,获得10
54秒前
MQL完成签到,获得积分10
58秒前
旷野发布了新的文献求助10
58秒前
WYK完成签到 ,获得积分10
58秒前
huihongzeng发布了新的文献求助10
1分钟前
DChen完成签到 ,获得积分10
1分钟前
taoatao完成签到,获得积分10
1分钟前
1分钟前
小名余土土完成签到 ,获得积分10
1分钟前
xx11发布了新的文献求助10
1分钟前
小陈子完成签到,获得积分10
1分钟前
huihongzeng完成签到,获得积分20
1分钟前
可知发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990008
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256121
捐赠科研通 3270913
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216