已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation

计算机科学 分割 瓶颈 判别式 人工智能 计算复杂性理论 推论 图像分割 掷骰子 失败 模式识别(心理学) 算法 并行计算 数学 几何学 嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3377-3390 被引量:140
标识
DOI:10.1109/tmi.2024.3398728
摘要

Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逍遥小书生完成签到 ,获得积分10
刚刚
怕孤单的听枫完成签到,获得积分20
刚刚
1秒前
高高的哈密瓜完成签到 ,获得积分10
2秒前
君仔完成签到,获得积分10
6秒前
8秒前
10秒前
小丸子完成签到,获得积分10
10秒前
Owen应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
魁梧的傲芙完成签到,获得积分10
14秒前
15秒前
云初完成签到,获得积分10
15秒前
hahaha完成签到 ,获得积分10
15秒前
15秒前
15秒前
17秒前
欣喜的诗筠完成签到 ,获得积分10
18秒前
Omni完成签到,获得积分10
18秒前
子陇完成签到,获得积分10
19秒前
20秒前
LTJ完成签到,获得积分10
20秒前
又声完成签到,获得积分10
23秒前
23秒前
Yxxx完成签到 ,获得积分10
24秒前
酷波er应助秀儿采纳,获得10
25秒前
故意不上钩的鱼应助Omni采纳,获得10
25秒前
27秒前
隐形曼青应助魔幻的外套采纳,获得10
29秒前
充电宝应助yyyyyzy采纳,获得10
31秒前
弈天完成签到 ,获得积分10
31秒前
芝士奶盖有点咸完成签到 ,获得积分10
32秒前
成就书雪完成签到,获得积分10
33秒前
你好完成签到 ,获得积分0
34秒前
spring完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290873
求助须知:如何正确求助?哪些是违规求助? 4442088
关于积分的说明 13829259
捐赠科研通 4324915
什么是DOI,文献DOI怎么找? 2373887
邀请新用户注册赠送积分活动 1369281
关于科研通互助平台的介绍 1333356