已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation

计算机科学 分割 瓶颈 判别式 人工智能 计算复杂性理论 推论 图像分割 掷骰子 失败 模式识别(心理学) 算法 并行计算 数学 几何学 嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3377-3390 被引量:224
标识
DOI:10.1109/tmi.2024.3398728
摘要

Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
冬日暖阳发布了新的文献求助10
5秒前
xink完成签到,获得积分10
5秒前
LG关闭了LG文献求助
6秒前
狂野萤应助wssamuel采纳,获得10
6秒前
酷狗小熊发布了新的文献求助10
6秒前
7秒前
顾矜应助L11采纳,获得10
7秒前
耍酷花卷发布了新的文献求助10
8秒前
淡淡奇迹发布了新的文献求助10
10秒前
jinzhao完成签到 ,获得积分10
10秒前
田様应助LYL采纳,获得10
12秒前
14秒前
Jiang 小白完成签到,获得积分10
15秒前
科研通AI6应助复杂的苗条采纳,获得10
16秒前
18秒前
JJing完成签到 ,获得积分10
18秒前
21秒前
淡淡尔烟完成签到,获得积分20
21秒前
狂野的慕蕊完成签到,获得积分10
21秒前
青椒完成签到 ,获得积分10
22秒前
23秒前
煎饼煎饼发布了新的文献求助10
23秒前
无辜含桃完成签到,获得积分10
24秒前
CJX完成签到,获得积分10
24秒前
科研通AI2S应助狂野的慕蕊采纳,获得10
24秒前
欢呼乘风发布了新的文献求助10
25秒前
菜菜泽发布了新的文献求助10
26秒前
26秒前
27秒前
你好棒呀完成签到,获得积分10
29秒前
Orange应助煎饼煎饼采纳,获得10
29秒前
30秒前
CJX发布了新的文献求助10
30秒前
yznfly应助栗爷采纳,获得50
31秒前
科研通AI6应助耍酷花卷采纳,获得10
31秒前
31秒前
he完成签到,获得积分10
33秒前
小毛豆发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627261
求助须知:如何正确求助?哪些是违规求助? 4713332
关于积分的说明 14961607
捐赠科研通 4784189
什么是DOI,文献DOI怎么找? 2554779
邀请新用户注册赠送积分活动 1516304
关于科研通互助平台的介绍 1476657