清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation

计算机科学 分割 瓶颈 判别式 人工智能 计算复杂性理论 推论 图像分割 掷骰子 失败 模式识别(心理学) 算法 并行计算 数学 几何学 嵌入式系统
作者
Abdelrahman Shaker,Muhammad Maaz,Hanoona Rasheed,Salman Khan,Ming–Hsuan Yang,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3377-3390 被引量:75
标识
DOI:10.1109/tmi.2024.3398728
摘要

Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
10秒前
yellowonion完成签到 ,获得积分10
12秒前
wanci应助科研通管家采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
上官靖完成签到 ,获得积分10
25秒前
25秒前
点点完成签到 ,获得积分10
31秒前
欢呼的茗茗完成签到 ,获得积分10
41秒前
47秒前
hhh2018687完成签到,获得积分10
55秒前
你好完成签到 ,获得积分0
59秒前
雪白小丸子完成签到,获得积分10
1分钟前
陈小青完成签到 ,获得积分10
1分钟前
馆长举报默默洋葱求助涉嫌违规
1分钟前
1分钟前
噗噗完成签到 ,获得积分10
1分钟前
asdwind完成签到,获得积分10
1分钟前
牛黄完成签到 ,获得积分10
1分钟前
波波完成签到 ,获得积分10
1分钟前
1分钟前
土拨鼠完成签到 ,获得积分10
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
1分钟前
fanssw完成签到 ,获得积分0
1分钟前
ccc2完成签到,获得积分10
1分钟前
行难路发布了新的文献求助10
1分钟前
coolplex完成签到 ,获得积分10
1分钟前
缺粥完成签到 ,获得积分10
1分钟前
2分钟前
赵济尧完成签到,获得积分10
2分钟前
赵济尧发布了新的文献求助10
2分钟前
manman完成签到 ,获得积分10
2分钟前
老迟的新瑶完成签到 ,获得积分10
2分钟前
麻花阳完成签到,获得积分10
2分钟前
浮游应助赵济尧采纳,获得10
2分钟前
xiaowuge完成签到 ,获得积分10
2分钟前
General完成签到 ,获得积分10
2分钟前
xiaofeixia完成签到 ,获得积分10
2分钟前
清脆如娆完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597181
求助须知:如何正确求助?哪些是违规求助? 4008867
关于积分的说明 12409629
捐赠科研通 3688002
什么是DOI,文献DOI怎么找? 2032871
邀请新用户注册赠送积分活动 1066109
科研通“疑难数据库(出版商)”最低求助积分说明 951394