Hybrid feature selection in a machine learning predictive model for perioperative myocardial injury in noncoronary cardiac surgery with cardiopulmonary bypass

医学 围手术期 体外循环 心脏外科 逻辑回归 肌钙蛋白I 内科学 心脏病学 外科 急诊医学 心肌梗塞
作者
Qian Li,Hong Lv,Yuye Chen,Jingjia Shen,Jia shi,Chenghui Zhou
出处
期刊:Perfusion [SAGE]
标识
DOI:10.1177/02676591241253459
摘要

Background Perioperative myocardial injury (PMI) is associated with increased mobility and mortality after noncoronary cardiac surgery. However, limited studies have developed a predictive model for PMI. Therefore, we used hybrid feature selection (FS) methods to establish a predictive model for PMI in noncoronary cardiac surgery with cardiopulmonary bypass (CPB). Methods This was a single-center retrospective study conducted at the Fuwai Hospital in China. Patients aged 18-70 years who underwent elective noncoronary surgery with CPB at our institution from December 2018 to April 2021 were enrolled. The primary outcome was PMI, defined as the postoperative cardiac troponin I (cTnI) levels exceeding 220 times of upper reference limit (URL). Statistical analyses were conducted by Python (Python Software Foundation, version 3.9.7 and integrated development environment Jupyter Notebook 1.1.0) and SPSS software version 26.0 (IBM Corp., Armonk, New York, USA). Results A total of 1130 patients were eventually eligible for this study. The incidence of PMI was 20.3% (229/1130) in the overall patients, 20.6% (163/791) in the training dataset, and 19.5% (66/339) in the testing dataset. The logistic regression model performed the best AUC of 0.6893 (95 CI%: 0.6371-0.7382) by the traditional selection method, and the random forest model performed the best AUC of 0.6937 (95 CI%: 0.6416-0.7423) by the union of Wrapper and Embedded method, and the CatBoost model performed the best AUC of 0.6828 (95 CI%: 0.6304-0.7320) by the union of Embedded and forward logistic regression technique, and the Naïve Bayes model achieved the best AUC with 0.7254 (95 CI%: 0.6746-0.7723) by forwarding logistic regression method. Moreover, the decision tree, KNeighborsClassifier, and support vector machine models performed the worse AUC in all selection forms. Furthermore, the SHapley Additive exPlanations plot showed that prolonged CPB, aortic clamp time, and preoperative low platelets count were strongly related to the PMI risk. Conclusions In total, four category feature selection methods were utilized, comprising five individual selection techniques and 15 combined methods. Notably, the combination of logistic regression and embedded methods demonstrated outstanding performance in predicting PMI risk. We also concluded that the machine learning model, including random forest, catboost, and Naive Bayes, were suitable candidates for establishing PMI predictive model. Nevertheless, additional investigation and validation are imperative for substantiating these finding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
刚刚
沉静的店员完成签到,获得积分10
刚刚
xuxu发布了新的文献求助10
1秒前
THB发布了新的文献求助10
2秒前
dengyuhang完成签到,获得积分10
2秒前
ZNN1234发布了新的文献求助10
2秒前
DrWho发布了新的文献求助10
2秒前
科研通AI2S应助拾光采纳,获得10
4秒前
彼岸完成签到,获得积分10
5秒前
fap发布了新的文献求助10
5秒前
JamesPei应助1111采纳,获得10
6秒前
dcy完成签到,获得积分10
9秒前
思源应助俭朴的白开水采纳,获得10
10秒前
隐形之玉完成签到,获得积分10
10秒前
12秒前
giggity7407完成签到,获得积分10
12秒前
THB完成签到,获得积分10
12秒前
李健的粉丝团团长应助a焦采纳,获得10
13秒前
15秒前
DRFANG发布了新的文献求助10
17秒前
拾光完成签到,获得积分10
17秒前
17秒前
xuxu完成签到 ,获得积分10
18秒前
所所应助YCW采纳,获得10
21秒前
脑洞疼应助YCW采纳,获得10
21秒前
22秒前
1111发布了新的文献求助10
22秒前
共享精神应助zhangh65采纳,获得10
23秒前
SCI发布了新的文献求助10
23秒前
kimi_saigou完成签到,获得积分10
24秒前
25秒前
Lucy完成签到,获得积分10
26秒前
yalon给yalon的求助进行了留言
26秒前
JamesPei应助xuqiansd采纳,获得10
26秒前
科研通AI2S应助DRFANG采纳,获得10
27秒前
马赫发布了新的文献求助10
27秒前
28秒前
Akim应助爱听歌笑寒采纳,获得10
30秒前
31秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459822
求助须知:如何正确求助?哪些是违规求助? 3054079
关于积分的说明 9040558
捐赠科研通 2743401
什么是DOI,文献DOI怎么找? 1504887
科研通“疑难数据库(出版商)”最低求助积分说明 695478
邀请新用户注册赠送积分活动 694754