Enhancing XRF sensor-based sorting of porphyritic copper ore using particle swarm optimization-support vector machine (PSO-SVM) algorithm

粒子群优化 支持向量机 分类 计算机科学 算法 模式识别(心理学) 人工智能 数学优化 数学
作者
Zhengyu Liu,Jue Kou,Zengxin Yan,Peilong Wang,Chang Liu,Chunbao Sun,Anlin Shao,Bern Klein
出处
期刊:International journal of mining science and technology [Elsevier BV]
卷期号:34 (4): 545-556 被引量:1
标识
DOI:10.1016/j.ijmst.2024.04.002
摘要

X-ray fluorescence (XRF) sensor-based ore sorting enables efficient beneficiation of heterogeneous ores, while intraparticle heterogeneity can cause significant grade detection errors, leading to misclassifications and hindering widespread technology adoption. Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals. Previous studies mainly used linear regression (LR) algorithms including simple linear regression (SLR), multivariable linear regression (MLR), and multivariable linear regression with interaction (MLRI) but often fell short attaining satisfactory results. This study employed the particle swarm optimization support vector machine (PSO-SVM) algorithm for sorting porphyritic copper ore pebble. Lab-scale results showed PSO-SVM outperformed LR and raw data (RD) models and the significant interaction effects among input features was observed. Despite poor input data quality, PSO-SVM demonstrated exceptional capabilities. Lab-scale sorting achieved 93.0% accuracy, 0.24% grade increase, 84.94% recovery rate, 57.02% discard rate, and a remarkable 39.62 ¥/t net smelter return (NSR) increase compared to no sorting. These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality (T=10, T is XRF testing times). The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated. Input element selection and mineral association analysis elucidate element importance and influence mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
解语花应助zzzcxxx采纳,获得50
2秒前
acorn发布了新的文献求助10
3秒前
3秒前
777发布了新的文献求助10
4秒前
5秒前
vincy发布了新的文献求助50
5秒前
量子星尘发布了新的文献求助10
5秒前
Aten发布了新的文献求助10
5秒前
6秒前
刘刘发布了新的文献求助10
8秒前
orixero应助努力退休小博士采纳,获得10
8秒前
8秒前
11秒前
烟花应助acorn采纳,获得10
11秒前
123完成签到,获得积分10
12秒前
张雷完成签到,获得积分10
15秒前
可爱的函函应助是玥玥啊采纳,获得10
17秒前
18秒前
小乖完成签到 ,获得积分10
19秒前
顾矜应助铱金采纳,获得10
19秒前
20秒前
sara完成签到,获得积分10
22秒前
22秒前
酒酿是也发布了新的文献求助10
23秒前
liguri完成签到,获得积分10
23秒前
君君发布了新的文献求助30
23秒前
23秒前
王侯将相发布了新的文献求助10
25秒前
26秒前
寒冷鹏煊发布了新的文献求助10
26秒前
yang发布了新的文献求助10
27秒前
淀粉发布了新的文献求助10
28秒前
29秒前
fighting发布了新的文献求助10
30秒前
化学元素发布了新的文献求助10
30秒前
32秒前
核桃应助他年我若成道采纳,获得10
33秒前
36秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309