3D printing of layered brain-like structures using peptide modified gellan gum substrates

结冷胶 材料科学 神经细胞 自愈水凝胶 细胞外基质 组织工程 纳米技术 神经干细胞 生物医学工程 神经组织工程 细胞 细胞生物学 化学 干细胞 生物 医学 生物化学 食品科学 高分子化学
作者
Rodrigo Lozano,Leo Stevens,Brianna C. Thompson,Kerry J. Gilmore,Robert Gorkin,Elise M. Stewart,Marc in het Panhuis,Mario Romero‐Ortega,Gordon G. Wallace
出处
期刊:Biomaterials [Elsevier]
卷期号:67: 264-273 被引量:399
标识
DOI:10.1016/j.biomaterials.2015.07.022
摘要

The brain is an enormously complex organ structured into various regions of layered tissue. Researchers have attempted to study the brain by modeling the architecture using two dimensional (2D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to our understanding of the functioning of the brain at the tissue or organ level. To address these obstacles, we demonstrate a new method to bioprint 3D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels. Brain-like structures were constructed using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. The neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix. The facile ability to form discrete cell-containing layers validates the application of this novel printing technique to form complex, layered and viable 3D cell structures. These brain-like structures offer the opportunity to reproduce more accurate 3D in vitro microstructures with applications ranging from cell behavior studies to improving our understanding of brain injuries and neurodegenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
刚刚
zhuz发布了新的文献求助10
1秒前
1秒前
英俊的铭应助赖账的坦克采纳,获得10
2秒前
2秒前
olivia发布了新的文献求助10
3秒前
华安完成签到,获得积分10
3秒前
4秒前
舒适路人发布了新的文献求助10
4秒前
科研通AI2S应助mjj采纳,获得10
5秒前
韦明凯发布了新的文献求助10
5秒前
ly完成签到,获得积分10
5秒前
王青文完成签到,获得积分10
6秒前
mhl11应助S.D.L采纳,获得10
6秒前
哦豁发布了新的文献求助10
6秒前
yaoyao完成签到,获得积分10
7秒前
儒雅雪柳发布了新的文献求助10
8秒前
LI关闭了LI文献求助
8秒前
hl发布了新的文献求助10
8秒前
积极小懒虫应助123采纳,获得10
9秒前
10秒前
水煮鱼完成签到,获得积分20
10秒前
11秒前
11秒前
竹前家庆完成签到,获得积分10
11秒前
12秒前
张润东完成签到,获得积分10
13秒前
hcch完成签到,获得积分10
13秒前
英姑应助对潇潇暮雨采纳,获得10
13秒前
怦怦应助忐忑的傲菡采纳,获得10
14秒前
怦怦应助忐忑的傲菡采纳,获得10
14秒前
xin完成签到,获得积分10
14秒前
mjj发布了新的文献求助10
16秒前
大约在冬季完成签到,获得积分10
16秒前
Labubu关注了科研通微信公众号
16秒前
韦明凯完成签到,获得积分10
17秒前
17秒前
zhao发布了新的文献求助10
17秒前
Joe完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308920
求助须知:如何正确求助?哪些是违规求助? 2942356
关于积分的说明 8508205
捐赠科研通 2617301
什么是DOI,文献DOI怎么找? 1430043
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649215