已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stochastic finite element method for elasto-plastic body

数学 有限元法 应用数学 冯·米塞斯屈服准则 多项式混沌 蒙特卡罗方法 概率逻辑 一般化 数学分析 结构工程 统计 工程类
作者
Maciej Anders,Muneo Hori
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:46 (11): 1897-1916 被引量:95
标识
DOI:10.1002/(sici)1097-0207(19991220)46:11<1897::aid-nme758>3.0.co;2-3
摘要

International Journal for Numerical Methods in EngineeringVolume 46, Issue 11 p. 1897-1916 Research Article Stochastic finite element method for elasto-plastic body Maciej Anders, Maciej Anders Earthquake Research Institute, The University of Tokyo, JapanSearch for more papers by this authorMuneo Hori, Corresponding Author Muneo Hori [email protected] Earthquake Research Institute, The University of Tokyo, JapanEarthquake Research Institute, The University of Tokyo, 1-1-1-Yayoi, Bunkyo, Tokyo 113-0032, JapanSearch for more papers by this author Maciej Anders, Maciej Anders Earthquake Research Institute, The University of Tokyo, JapanSearch for more papers by this authorMuneo Hori, Corresponding Author Muneo Hori [email protected] Earthquake Research Institute, The University of Tokyo, JapanEarthquake Research Institute, The University of Tokyo, 1-1-1-Yayoi, Bunkyo, Tokyo 113-0032, JapanSearch for more papers by this author First published: 09 November 1999 https://doi.org/10.1002/(SICI)1097-0207(19991220)46:11<1897::AID-NME758>3.0.CO;2-3Citations: 73AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract This paper proposes a Stochastic Finite Element Method (SFEM) for non-linear elasto-plastic bodies, as a generalization of the SFEM for linear elastic bodies developed by Ghanem and Spanos who applied the Karhunen–Loeve expansion and the polynomial chaos expansion for stochastic material properties and field variables, respectively. The key feature of the proposed SFEM is the introduction of two fictitious bodies whose behaviours provide upper and lower bounds for the mean of field variables. The two bounding bodies are rigorously obtained from a given distribution of material properties. The deformation of an ideal elasto-plastic body of the Huber–von Mises type is computed as an illustrative example. The results are compared with Monte-Carlo simulation. It is shown that the proposed SFEM can satisfactorily estimate means, variances and other probabilistic characteristics of field variables even when the body has a larger variance of the material properties. Copyright © 1999 John Wiley & Sons, Ltd. REFERENCES 1 Der Kiureghian A, Ke BJ. The stochastic finite element method in structural reliability. Journal of Probabilistic Engineering Mechanics 1988; 3(2): 83–91. 2 Liu PL, Der Kiureghian A. Finite element reliability of geometrically nonlinear uncertain structures. Journal of Engineering Mechanics ASCE 1991; 117(8): 1806–1825. 3 Hisada T, Nakagiri S. Stochastic finite element method developed for structural safety and reliability. Proceedings of the Third International Conference on Structural Safety and Reliability, Trondheim, Norway, 1981; 395–308. 4 Liu WK, Mani A, Belytschko T. Finite element methods in probabilistic mechanics. Journal of Probabilistic Engineering Mechanics 1987; 2(4): 201–213. 5 Yamazaki F, Shinozuka M. Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics ASCE 1988; 114(8): 1335–1354. 6 Spanos PD, Ghanem RG. Stochastic finite element expansion for random media. Journal of Engineering Mechanics ASCE 1989; 115(5): 1035–1053. 7 Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. Springer: Berlin, 1991. 8 Lawrence MA. Basis random variables in finite element analysis. International Journal for Numerical Methods in Engineering 1987; 24: 1849–1863. 9 Ghanem RG, Spanos PD. Polynomial chaos in stochastic finite elements. Journal of Applied Mechanics ASME 1990; 57(1): 197–202. 10 Hashin, Shtrikman. On some variational principles in anisotropic and non homogeneous elasticity. Journal of Mechanical Physics of Solids 1962; 10(19): 335–342. 11 Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials ( 2nd edn). North-Holland: London, 1998. 12 Hori M, Munasinghe S. On optimistic/pessimistic evaluation of stochastically varying heterogeneous bodies. Mechanics of Materials (in print). 13 Washizu K. Variational Methods in Elasticity and Plasticity. Pergamon Press: New York, 1975. 14 Ortiz M, Popov EP. Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering 1985; 21: 1561–1576. 15 Ortiz M, Simo JC. An analysis of a new class of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering 1986; 23: 353–366. 16 Simo JC, Taylor RL. A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering 1986; 22: 649–670. 17 Adler RJ. The Geometry of Random Fields. Wiley: New York, 1981. 18 Cameron RH, Martin WT. The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals. Annals of Mathematics 1947; 48: 385–392. 19 Chen WF, Han DJ. Plasticity for Structural Engineers. Springer: New York, 1988. 20 Zhang J, Ellingwood B. Orthogonal series expansions of random fields in reliability analysis. Journal of Engineering Mechanics ASCE 1994; 120(12): 2660–2677. 21 Li CC, Der Kiureghian A. Optimal discretization of random fields. Journal of Engineering Mechanics ASCE 1993; 119(6): 1136–1154. 22 Ghanem RG, Spanos PD. Spectral stochastic finite element formulation for reliability analysis. Journal of Engineering and Mechanics ASCE 1991; 117(10): 2351–2372. 23 Van Trees HL. Detection, Estimation and Modulation Theory, Part 1. Wiley: New York, 1968. 24 de Borst R. Computational Methods in Non-linear Solid Mechanics. Lecture Notes. Department of Civil Engineering, Delft University of Technology: Delft, 1993. 25 Feenstra PH, de Borst R. A composite plasticity model for concrete. International Journal for Numerical Methods in Engineering 1996; 33: 707–730. 26 Loeve M. Probability Theory ( 4th edn). Springer: Berlin, 1977. 27 Lourenco PB, de Borst R, Rots JG. A plane stress softening plasticity model for orthotropic materials. International Journal for Numerical Methods in Engineering 1997; 40: 4033–4057. 28 Zienkiewicz OC, Taylor RL. The Finite Element Method. McGraw-Hill: New York, 1989. Citing Literature Volume46, Issue1120 December 1999Pages 1897-1916 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niubing完成签到,获得积分10
刚刚
阿兰完成签到 ,获得积分10
刚刚
大雪封山完成签到,获得积分10
1秒前
万灵竹完成签到 ,获得积分10
1秒前
2秒前
小白菜完成签到,获得积分10
2秒前
醒醒完成签到 ,获得积分10
3秒前
Agamemnon发布了新的文献求助10
4秒前
doctor完成签到,获得积分20
4秒前
766465完成签到 ,获得积分10
4秒前
gk123kk完成签到,获得积分10
5秒前
feixue发布了新的文献求助10
5秒前
乐正怡完成签到 ,获得积分0
5秒前
我爱康康文献完成签到 ,获得积分10
5秒前
leslie完成签到 ,获得积分10
6秒前
灵儿完成签到,获得积分10
7秒前
能干的语芙完成签到 ,获得积分10
7秒前
充电宝应助xieenxe采纳,获得10
7秒前
Lychee完成签到 ,获得积分10
8秒前
hqq完成签到,获得积分10
8秒前
FODCOC完成签到,获得积分10
8秒前
小凯完成签到 ,获得积分10
9秒前
生信人完成签到 ,获得积分10
9秒前
YOLO完成签到 ,获得积分10
9秒前
谭文完成签到 ,获得积分10
9秒前
Lucas应助zx采纳,获得10
9秒前
纳米纤维素完成签到,获得积分10
10秒前
珊珊晓晨完成签到,获得积分20
12秒前
张元东完成签到 ,获得积分10
12秒前
冷静的莞完成签到 ,获得积分10
13秒前
14秒前
小羊完成签到 ,获得积分10
14秒前
逍遥小书生完成签到 ,获得积分10
15秒前
自行输入昵称完成签到 ,获得积分10
15秒前
lyyzxx完成签到 ,获得积分0
15秒前
Ljy完成签到 ,获得积分10
15秒前
Excalibur发布了新的文献求助200
16秒前
小耿完成签到 ,获得积分10
17秒前
CHL完成签到 ,获得积分10
17秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241659
求助须知:如何正确求助?哪些是违规求助? 2886177
关于积分的说明 8242038
捐赠科研通 2554730
什么是DOI,文献DOI怎么找? 1382800
科研通“疑难数据库(出版商)”最低求助积分说明 649622
邀请新用户注册赠送积分活动 625303

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10