Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling

药代动力学 纳米医学 基于生理学的药代动力学模型 药理学 计算机科学 医学 计算生物学 生物 纳米技术 材料科学 纳米颗粒
作者
Darren Moss,Marco Siccardi
出处
期刊:British Journal of Pharmacology [Wiley]
卷期号:171 (17): 3963-3979 被引量:103
标识
DOI:10.1111/bph.12604
摘要

The delivery of therapeutic agents is characterized by numerous challenges including poor absorption, low penetration in target tissues and non-specific dissemination in organs, leading to toxicity or poor drug exposure. Several nanomedicine strategies have emerged as an advanced approach to enhance drug delivery and improve the treatment of several diseases. Numerous processes mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, metabolism and elimination (ADME) being poorly understood and often differing substantially from traditional formulations. Understanding how nanoformulation composition and physicochemical properties influence drug distribution in the human body is of central importance when developing future treatment strategies. A helpful pharmacological tool to simulate the distribution of nanoformulations is represented by physiologically based pharmacokinetics (PBPK) modelling, which integrates system data describing a population of interest with drug/nanoparticle in vitro data through a mathematical description of ADME. The application of PBPK models for nanomedicine is in its infancy and characterized by several challenges. The integration of property-distribution relationships in PBPK models may benefit nanomedicine research, giving opportunities for innovative development of nanotechnologies. PBPK modelling has the potential to improve our understanding of the mechanisms underpinning nanoformulation disposition and allow for more rapid and accurate determination of their kinetics. This review provides an overview of the current knowledge of nanomedicine distribution and the use of PBPK modelling in the characterization of nanoformulations with optimal pharmacokinetics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJ完成签到,获得积分10
1秒前
CodeCraft应助雨中过客采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
lin发布了新的文献求助20
1秒前
绝望的文盲完成签到,获得积分10
1秒前
大模型应助guzhfia采纳,获得10
2秒前
充电宝应助haoyunlai采纳,获得10
2秒前
SciGPT应助mookie采纳,获得10
2秒前
北山完成签到,获得积分10
2秒前
fluency发布了新的文献求助10
3秒前
朱信姿发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
my196755完成签到,获得积分10
4秒前
成就以山完成签到 ,获得积分10
4秒前
天真书南完成签到,获得积分10
5秒前
LJ发布了新的文献求助10
5秒前
陈子豪完成签到,获得积分10
5秒前
丘比特应助阿波罗采纳,获得10
5秒前
BowieHuang应助77采纳,获得10
5秒前
sdccx应助123采纳,获得10
5秒前
6秒前
年华完成签到,获得积分10
6秒前
6秒前
o992891完成签到 ,获得积分10
6秒前
皓月如静发布了新的文献求助10
6秒前
7秒前
千俞完成签到 ,获得积分10
7秒前
jinya完成签到,获得积分10
7秒前
wanci应助科研小狗采纳,获得10
8秒前
8秒前
8秒前
zhouzhou完成签到,获得积分10
8秒前
青火完成签到,获得积分10
8秒前
9秒前
9秒前
闪闪的乐蕊完成签到,获得积分10
9秒前
李爱国应助李蕤蕤采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719991
求助须知:如何正确求助?哪些是违规求助? 5258347
关于积分的说明 15290002
捐赠科研通 4869605
什么是DOI,文献DOI怎么找? 2614876
邀请新用户注册赠送积分活动 1564872
关于科研通互助平台的介绍 1522051