Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling

药代动力学 纳米医学 基于生理学的药代动力学模型 药理学 计算机科学 医学 计算生物学 生物 纳米技术 材料科学 纳米颗粒
作者
Darren Moss,Marco Siccardi
出处
期刊:British Journal of Pharmacology [Wiley]
卷期号:171 (17): 3963-3979 被引量:103
标识
DOI:10.1111/bph.12604
摘要

The delivery of therapeutic agents is characterized by numerous challenges including poor absorption, low penetration in target tissues and non-specific dissemination in organs, leading to toxicity or poor drug exposure. Several nanomedicine strategies have emerged as an advanced approach to enhance drug delivery and improve the treatment of several diseases. Numerous processes mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, metabolism and elimination (ADME) being poorly understood and often differing substantially from traditional formulations. Understanding how nanoformulation composition and physicochemical properties influence drug distribution in the human body is of central importance when developing future treatment strategies. A helpful pharmacological tool to simulate the distribution of nanoformulations is represented by physiologically based pharmacokinetics (PBPK) modelling, which integrates system data describing a population of interest with drug/nanoparticle in vitro data through a mathematical description of ADME. The application of PBPK models for nanomedicine is in its infancy and characterized by several challenges. The integration of property-distribution relationships in PBPK models may benefit nanomedicine research, giving opportunities for innovative development of nanotechnologies. PBPK modelling has the potential to improve our understanding of the mechanisms underpinning nanoformulation disposition and allow for more rapid and accurate determination of their kinetics. This review provides an overview of the current knowledge of nanomedicine distribution and the use of PBPK modelling in the characterization of nanoformulations with optimal pharmacokinetics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嗯嗯完成签到 ,获得积分10
2秒前
3秒前
好耶完成签到,获得积分10
4秒前
孤岛完成签到,获得积分10
4秒前
瘦瘦冰凡发布了新的文献求助10
4秒前
所所应助YYMY2022采纳,获得10
4秒前
Visy完成签到,获得积分10
4秒前
深情安青应助X_X采纳,获得10
6秒前
好耶发布了新的文献求助20
7秒前
9秒前
方法完成签到,获得积分10
10秒前
坚定思天完成签到,获得积分10
10秒前
11秒前
一分发布了新的文献求助10
12秒前
12秒前
隐形曼青应助llll采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
失眠呆呆鱼完成签到 ,获得积分10
12秒前
14秒前
好多鱼爱学习完成签到 ,获得积分10
15秒前
拓木幸子完成签到,获得积分10
15秒前
正直芫发布了新的文献求助10
17秒前
17秒前
ossantu完成签到,获得积分10
17秒前
sxm1004完成签到,获得积分10
17秒前
sky发布了新的文献求助10
18秒前
llll完成签到,获得积分10
18秒前
都哥发布了新的文献求助10
19秒前
20秒前
弋沨完成签到,获得积分10
20秒前
21秒前
韩业民完成签到,获得积分10
21秒前
万能图书馆应助袁不评采纳,获得10
21秒前
22秒前
Visy发布了新的文献求助10
22秒前
23秒前
无限煎饼发布了新的文献求助10
23秒前
一只小学弱完成签到,获得积分10
24秒前
嗡嗡嗡完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422