材料科学
光电流
钙钛矿(结构)
量子点
降级(电信)
能量转换效率
光伏
光电子学
相(物质)
纳米技术
相对湿度
光伏系统
化学工程
电气工程
物理
化学
热力学
工程类
有机化学
作者
Seonghye Lim,J Kim,J. Y. Park,Jiyoung Min,Seoyeon Yun,T. Park,Younghoon Kim,Jongmin Choi
标识
DOI:10.1021/acsami.0c15484
摘要
CsPbI3 perovskite quantum dots (CsPbI3-PQDs) have recently come into focus as a light-harvesting material that can act as a platform through which to combine the material advantages of both perovskites and QDs. However, the low cubic-phase stability of CsPbI3-PQDs in ambient conditions has been recognized as a factor that inhibits device stability. TiO2 nanoparticles are the most regularly used materials as an electron transport layer (ETL) in CsPbI3-PQD photovoltaics; however, we found that TiO2 can facilitate the cubic-phase degradation of CsPbI3-PQDs due to its vigorous photocatalytic activity. To address these issues, we have developed chloride-passivated SnO2 QDs (Cl@SnO2 QDs), which have low photocatalytic activity and few surface traps, to suppress the cubic-phase degradation of CsPbI3-PQDs. Given these advantages, the CsPbI3-PQD solar cells based on Cl@SnO2 ETLs show significantly improved device operational stability (under conditions of 50% relative humidity and 1-sun illumination), compared to those based on TiO2 ETLs. In addition, the Cl@SnO2-based devices showed improved open circuit voltage and photocurrent density, resulting in enhanced power conversion efficiency (PCE) up to 14.5% compared to that of TiO2-based control devices (PCE of 13.8%).
科研通智能强力驱动
Strongly Powered by AbleSci AI