Machine learning based automated identification of thunderstorms from anemometric records using shapelet transform

雷雨 计算机科学 风速计 风速 鉴定(生物学) 气象学 机器学习 人工智能 数据挖掘 地理 植物 生物
作者
Monica Arul,Ahsan Kareem,Massimiliano Burlando,Giovanni Solari
出处
期刊:Journal of Wind Engineering and Industrial Aerodynamics [Elsevier]
卷期号:220: 104856-104856 被引量:12
标识
DOI:10.1016/j.jweia.2021.104856
摘要

Detection of thunderstorms is important to the wind hazard community to better understand extreme wind field characteristics and associated wind-induced load effects on structures. This paper contributes to this effort by proposing an innovative course of research that uses machine learning techniques, independent of wind statistics-based parameters, to autonomously identify thunderstorms from large databases containing high-frequency sampled continuous wind speed data. In this context, the use of Shapelet transform is proposed to identify key individual attributes distinctive to extreme wind events based on similarity of the shape of their time series signature. This shape-based representation, when combined with machine learning algorithms, yields a practical event detection procedure with minimal domain expertise. In this paper, the shapelet transform along with Random Forest classifier is employed for the identification of thunderstorms from 1-year of data from 14 ultrasonic anemometers that are a part of an extensive in-situ wind monitoring network in the Northern Mediterranean ports. A collective total of 240 non-stationary records associated with thunderstorms were identified using this method. The results lead to enhancing the pool of thunderstorm data for a more comprehensive understanding of a wide variety of thunderstorms that have not been previously detected using conventional gust factor-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RJY发布了新的文献求助10
刚刚
7890733发布了新的文献求助10
刚刚
ss_hHe完成签到,获得积分10
1秒前
蛙蛙大王发布了新的文献求助30
1秒前
1秒前
m_seek发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
changping应助科研通管家采纳,获得150
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
斯文黎云发布了新的文献求助50
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
xuanqing完成签到,获得积分10
4秒前
4秒前
汉堡包应助lily采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452