Machine learning based automated identification of thunderstorms from anemometric records using shapelet transform

雷雨 计算机科学 风速计 风速 鉴定(生物学) 气象学 机器学习 人工智能 数据挖掘 地理 植物 生物
作者
Monica Arul,Ahsan Kareem,Massimiliano Burlando,Giovanni Solari
出处
期刊:Journal of Wind Engineering and Industrial Aerodynamics [Elsevier BV]
卷期号:220: 104856-104856 被引量:12
标识
DOI:10.1016/j.jweia.2021.104856
摘要

Detection of thunderstorms is important to the wind hazard community to better understand extreme wind field characteristics and associated wind-induced load effects on structures. This paper contributes to this effort by proposing an innovative course of research that uses machine learning techniques, independent of wind statistics-based parameters, to autonomously identify thunderstorms from large databases containing high-frequency sampled continuous wind speed data. In this context, the use of Shapelet transform is proposed to identify key individual attributes distinctive to extreme wind events based on similarity of the shape of their time series signature. This shape-based representation, when combined with machine learning algorithms, yields a practical event detection procedure with minimal domain expertise. In this paper, the shapelet transform along with Random Forest classifier is employed for the identification of thunderstorms from 1-year of data from 14 ultrasonic anemometers that are a part of an extensive in-situ wind monitoring network in the Northern Mediterranean ports. A collective total of 240 non-stationary records associated with thunderstorms were identified using this method. The results lead to enhancing the pool of thunderstorm data for a more comprehensive understanding of a wide variety of thunderstorms that have not been previously detected using conventional gust factor-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
瘦瘦依白应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得30
2秒前
坦率的匪应助科研通管家采纳,获得20
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
执念完成签到,获得积分10
2秒前
2秒前
yar应助科研通管家采纳,获得10
2秒前
李爱国应助Gheros采纳,获得10
3秒前
在水一方应助1234采纳,获得10
3秒前
背后的桐发布了新的文献求助10
3秒前
在水一方应助Sylvia0528采纳,获得10
3秒前
完美世界应助舒适的店员采纳,获得10
3秒前
4秒前
Zever完成签到,获得积分10
4秒前
怡然的便当完成签到,获得积分10
4秒前
英姑应助haorui采纳,获得10
5秒前
5秒前
开放怀亦发布了新的文献求助10
5秒前
Zhuhaimao发布了新的文献求助10
5秒前
xiaohua关注了科研通微信公众号
5秒前
自觉灵凡完成签到 ,获得积分10
5秒前
亦安完成签到,获得积分10
6秒前
bingbing发布了新的文献求助10
6秒前
王AA完成签到,获得积分10
6秒前
wdy111举报阿斯师大求助涉嫌违规
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635