Deep learning trained algorithm maintains the quality of half-dose contrast-enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction

医学 计算机断层摄影术 图像质量 对比度(视觉) 断层摄影术 迭代重建 核医学 算法 放射科 人工智能 图像(数学) 计算机科学
作者
Ling-Ming Zeng,Xu Xu,Wen Zeng,Wanlin Peng,Jinge Zhang,Sixian Hu,Keling Liu,Chunchao Xia,Zhenlin Li
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:135: 109487-109487 被引量:19
标识
DOI:10.1016/j.ejrad.2020.109487
摘要

Purpose This study compares the image and diagnostic qualities of a DEep Learning Trained Algorithm (DELTA) for half-dose contrast-enhanced liver computed tomography (CT) with those of a commercial hybrid iterative reconstruction (HIR) method used for standard-dose CT (SDCT). Methods This study enrolled 207 adults, and they were divided into two groups: SDCT and low-dose CT (LDCT). SDCT was reconstructed using the HIR method (SDCTHIR), and LDCT was reconstructed using both the HIR method (LDCTHIR) and DELTA (LDCTDL). Noise, Hounsfield unit (HU) values, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between three image series. Two radiologists assessed the noise, artefacts, overall image quality, visualisation of critical anatomical structures and lesion detection, characterisation and visualisation. Results The mean effective doses were 5.64 ± 1.96 mSv for SDCT and 2.87 ± 0.87 mSv for LDCT. The noise of LDCTDL was significantly lower than that of SDCTHIR and LDCTHIR. The SNR and CNR of LDCTDL were significantly higher than those of the other two groups. The overall image quality, visualisation of anatomical structures and lesion visualisation between LDCTDL and SDCTHIR were not significantly different. For lesion detection, the sensitivities and specificities of SDCTHIR vs. LDCTDL were 81.9 % vs. 83.7 % and 89.1 % vs. 86.3 %, respectively, on a per-patient basis. SDCTHIR showed 75.4 % sensitivity and 82.6 % specificity for lesion characterisation on a per-patient basis, whereas LDCTDL showed 73.5 % sensitivity and 82.4 % specificity. Conclusions LDCT with DELTA had approximately 49 % dose reduction compared with SDCT with HIR while maintaining image quality on contrast-enhanced liver CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ding应助阳光采纳,获得10
2秒前
3秒前
mango完成签到,获得积分10
3秒前
3秒前
3秒前
酷炫蛋挞完成签到 ,获得积分10
4秒前
听风轻语发布了新的文献求助10
4秒前
5秒前
jungwon发布了新的文献求助10
5秒前
6秒前
所所应助王小红采纳,获得10
6秒前
岳莹晓发布了新的文献求助10
7秒前
俊逸翠柏完成签到,获得积分10
7秒前
8秒前
Zjf发布了新的文献求助10
8秒前
潘啊潘完成签到 ,获得积分10
8秒前
9秒前
帅过吴彦祖完成签到,获得积分10
9秒前
陆一完成签到 ,获得积分10
10秒前
杨颖发布了新的文献求助30
10秒前
孔孔发布了新的文献求助30
11秒前
11秒前
桐桐应助粗暴的流沙_采纳,获得20
11秒前
11秒前
11秒前
ChenWen发布了新的文献求助10
12秒前
jungwon完成签到,获得积分10
14秒前
LaFee完成签到,获得积分10
14秒前
Poisomber完成签到,获得积分10
14秒前
冰霜发布了新的文献求助10
14秒前
哟252发布了新的文献求助10
15秒前
mark163完成签到,获得积分10
15秒前
16秒前
科研通AI6应助刘惠兴采纳,获得10
16秒前
17秒前
wxr发布了新的文献求助10
17秒前
小镇的废物完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484143
求助须知:如何正确求助?哪些是违规求助? 4584418
关于积分的说明 14397830
捐赠科研通 4514421
什么是DOI,文献DOI怎么找? 2473992
邀请新用户注册赠送积分活动 1459944
关于科研通互助平台的介绍 1433349