Deep learning trained algorithm maintains the quality of half-dose contrast-enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction

医学 计算机断层摄影术 图像质量 对比度(视觉) 断层摄影术 迭代重建 核医学 算法 放射科 人工智能 图像(数学) 计算机科学
作者
Ling-Ming Zeng,Xu Xu,Wen Zeng,Wanlin Peng,Jin-Ge Zhang,Sixian Hu,Keling Liu,Chunchao Xia,Zhenlin Li
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:135: 109487-109487 被引量:15
标识
DOI:10.1016/j.ejrad.2020.109487
摘要

Purpose This study compares the image and diagnostic qualities of a DEep Learning Trained Algorithm (DELTA) for half-dose contrast-enhanced liver computed tomography (CT) with those of a commercial hybrid iterative reconstruction (HIR) method used for standard-dose CT (SDCT). Methods This study enrolled 207 adults, and they were divided into two groups: SDCT and low-dose CT (LDCT). SDCT was reconstructed using the HIR method (SDCTHIR), and LDCT was reconstructed using both the HIR method (LDCTHIR) and DELTA (LDCTDL). Noise, Hounsfield unit (HU) values, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between three image series. Two radiologists assessed the noise, artefacts, overall image quality, visualisation of critical anatomical structures and lesion detection, characterisation and visualisation. Results The mean effective doses were 5.64 ± 1.96 mSv for SDCT and 2.87 ± 0.87 mSv for LDCT. The noise of LDCTDL was significantly lower than that of SDCTHIR and LDCTHIR. The SNR and CNR of LDCTDL were significantly higher than those of the other two groups. The overall image quality, visualisation of anatomical structures and lesion visualisation between LDCTDL and SDCTHIR were not significantly different. For lesion detection, the sensitivities and specificities of SDCTHIR vs. LDCTDL were 81.9 % vs. 83.7 % and 89.1 % vs. 86.3 %, respectively, on a per-patient basis. SDCTHIR showed 75.4 % sensitivity and 82.6 % specificity for lesion characterisation on a per-patient basis, whereas LDCTDL showed 73.5 % sensitivity and 82.4 % specificity. Conclusions LDCT with DELTA had approximately 49 % dose reduction compared with SDCT with HIR while maintaining image quality on contrast-enhanced liver CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助Lam采纳,获得10
1秒前
JJXIONG完成签到,获得积分10
2秒前
河马发布了新的文献求助10
3秒前
3秒前
可爱的函函应助肖肖采纳,获得10
4秒前
CodeCraft应助平常的紫蓝采纳,获得10
4秒前
好宝宝完成签到,获得积分10
4秒前
3237924531发布了新的文献求助10
5秒前
hdy331完成签到,获得积分10
5秒前
完美世界应助123采纳,获得10
6秒前
6秒前
怕孤独的忆南完成签到,获得积分10
8秒前
追风完成签到 ,获得积分10
9秒前
9秒前
yao完成签到,获得积分10
9秒前
常芹发布了新的文献求助10
10秒前
ED应助科研路漫漫采纳,获得10
10秒前
11秒前
布鲁克完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
今后应助朴实的绣连采纳,获得30
13秒前
<小天才>发布了新的文献求助10
15秒前
15秒前
16秒前
Smy完成签到 ,获得积分10
16秒前
在水一方应助梁晓雯采纳,获得10
17秒前
Yy123发布了新的文献求助10
17秒前
tao发布了新的文献求助10
17秒前
3237924531完成签到,获得积分10
17秒前
健忘小霜完成签到,获得积分10
18秒前
19秒前
scholar完成签到,获得积分10
20秒前
wei发布了新的文献求助10
20秒前
鳗鱼灵阳完成签到,获得积分20
21秒前
21秒前
22秒前
无情的聋五完成签到 ,获得积分10
22秒前
Owen应助QQiang6采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028