Deep learning trained algorithm maintains the quality of half-dose contrast-enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction

医学 计算机断层摄影术 图像质量 对比度(视觉) 断层摄影术 迭代重建 核医学 算法 放射科 人工智能 图像(数学) 计算机科学
作者
Ling-Ming Zeng,Xu Xu,Wen Zeng,Wanlin Peng,Jin-Ge Zhang,Si-Xian Hu,Keling Liu,Chunchao Xia,Zhenlin Li
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:135: 109487-109487 被引量:15
标识
DOI:10.1016/j.ejrad.2020.109487
摘要

Purpose This study compares the image and diagnostic qualities of a DEep Learning Trained Algorithm (DELTA) for half-dose contrast-enhanced liver computed tomography (CT) with those of a commercial hybrid iterative reconstruction (HIR) method used for standard-dose CT (SDCT). Methods This study enrolled 207 adults, and they were divided into two groups: SDCT and low-dose CT (LDCT). SDCT was reconstructed using the HIR method (SDCTHIR), and LDCT was reconstructed using both the HIR method (LDCTHIR) and DELTA (LDCTDL). Noise, Hounsfield unit (HU) values, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between three image series. Two radiologists assessed the noise, artefacts, overall image quality, visualisation of critical anatomical structures and lesion detection, characterisation and visualisation. Results The mean effective doses were 5.64 ± 1.96 mSv for SDCT and 2.87 ± 0.87 mSv for LDCT. The noise of LDCTDL was significantly lower than that of SDCTHIR and LDCTHIR. The SNR and CNR of LDCTDL were significantly higher than those of the other two groups. The overall image quality, visualisation of anatomical structures and lesion visualisation between LDCTDL and SDCTHIR were not significantly different. For lesion detection, the sensitivities and specificities of SDCTHIR vs. LDCTDL were 81.9 % vs. 83.7 % and 89.1 % vs. 86.3 %, respectively, on a per-patient basis. SDCTHIR showed 75.4 % sensitivity and 82.6 % specificity for lesion characterisation on a per-patient basis, whereas LDCTDL showed 73.5 % sensitivity and 82.4 % specificity. Conclusions LDCT with DELTA had approximately 49 % dose reduction compared with SDCT with HIR while maintaining image quality on contrast-enhanced liver CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qqa发布了新的文献求助30
3秒前
福尔摩柯完成签到,获得积分10
3秒前
njufeng完成签到,获得积分10
3秒前
bkagyin应助研友_LOoomL采纳,获得10
3秒前
5秒前
李爱国应助NZH采纳,获得10
6秒前
吃吃完成签到,获得积分20
6秒前
8秒前
打打应助英勇的白风采纳,获得10
8秒前
善学以致用应助Tony采纳,获得10
8秒前
大模型应助王子采纳,获得10
8秒前
欢呼的烙发布了新的文献求助10
9秒前
10秒前
小蘑菇应助GakkiSmile采纳,获得10
13秒前
13秒前
Jackpu给Jackpu的求助进行了留言
14秒前
14秒前
吃吃发布了新的文献求助10
14秒前
英姑应助老温采纳,获得10
16秒前
mmhahaha完成签到 ,获得积分10
16秒前
李豆豆发布了新的文献求助30
18秒前
朴素蜡烛发布了新的文献求助10
18秒前
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
从容芮应助科研通管家采纳,获得30
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
从容芮应助科研通管家采纳,获得30
19秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
小二郎应助实验室的亡灵采纳,获得10
20秒前
不配.应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
不配.应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238389
求助须知:如何正确求助?哪些是违规求助? 2883793
关于积分的说明 8231686
捐赠科研通 2551769
什么是DOI,文献DOI怎么找? 1380253
科研通“疑难数据库(出版商)”最低求助积分说明 648987
邀请新用户注册赠送积分活动 624619