Deep learning trained algorithm maintains the quality of half-dose contrast-enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction

医学 计算机断层摄影术 图像质量 对比度(视觉) 断层摄影术 迭代重建 核医学 算法 放射科 人工智能 图像(数学) 计算机科学
作者
Ling-Ming Zeng,Xu Xu,Wen Zeng,Wanlin Peng,Jin-Ge Zhang,Sixian Hu,Keling Liu,Chunchao Xia,Zhenlin Li
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:135: 109487-109487 被引量:15
标识
DOI:10.1016/j.ejrad.2020.109487
摘要

Purpose This study compares the image and diagnostic qualities of a DEep Learning Trained Algorithm (DELTA) for half-dose contrast-enhanced liver computed tomography (CT) with those of a commercial hybrid iterative reconstruction (HIR) method used for standard-dose CT (SDCT). Methods This study enrolled 207 adults, and they were divided into two groups: SDCT and low-dose CT (LDCT). SDCT was reconstructed using the HIR method (SDCTHIR), and LDCT was reconstructed using both the HIR method (LDCTHIR) and DELTA (LDCTDL). Noise, Hounsfield unit (HU) values, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between three image series. Two radiologists assessed the noise, artefacts, overall image quality, visualisation of critical anatomical structures and lesion detection, characterisation and visualisation. Results The mean effective doses were 5.64 ± 1.96 mSv for SDCT and 2.87 ± 0.87 mSv for LDCT. The noise of LDCTDL was significantly lower than that of SDCTHIR and LDCTHIR. The SNR and CNR of LDCTDL were significantly higher than those of the other two groups. The overall image quality, visualisation of anatomical structures and lesion visualisation between LDCTDL and SDCTHIR were not significantly different. For lesion detection, the sensitivities and specificities of SDCTHIR vs. LDCTDL were 81.9 % vs. 83.7 % and 89.1 % vs. 86.3 %, respectively, on a per-patient basis. SDCTHIR showed 75.4 % sensitivity and 82.6 % specificity for lesion characterisation on a per-patient basis, whereas LDCTDL showed 73.5 % sensitivity and 82.4 % specificity. Conclusions LDCT with DELTA had approximately 49 % dose reduction compared with SDCT with HIR while maintaining image quality on contrast-enhanced liver CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jhlz5879完成签到,获得积分10
1秒前
悦耳曼凝完成签到 ,获得积分10
2秒前
文静的紫萱完成签到,获得积分10
2秒前
拼搏的飞薇完成签到,获得积分10
3秒前
曾建完成签到 ,获得积分10
4秒前
pep完成签到 ,获得积分10
5秒前
mufcyang完成签到,获得积分10
9秒前
了晨完成签到 ,获得积分10
10秒前
yi完成签到 ,获得积分10
13秒前
wxnice完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
星辰大海应助大橙子采纳,获得10
25秒前
25秒前
七QI完成签到 ,获得积分10
26秒前
29秒前
褚香旋完成签到,获得积分10
29秒前
一只狗东西完成签到 ,获得积分10
31秒前
宇老师发布了新的文献求助10
32秒前
33秒前
qiqi发布了新的文献求助30
35秒前
大橙子发布了新的文献求助10
38秒前
wzhang完成签到,获得积分10
39秒前
ken131完成签到 ,获得积分10
42秒前
myl完成签到,获得积分10
43秒前
728完成签到,获得积分10
49秒前
xiaofeng5838完成签到,获得积分10
49秒前
ronnie完成签到,获得积分10
49秒前
52秒前
寒冷芷蕊完成签到,获得积分20
52秒前
52秒前
Jane完成签到,获得积分10
52秒前
一氧化二氢完成签到,获得积分10
58秒前
凡事发生必有利于我完成签到,获得积分10
59秒前
yihaiqin完成签到 ,获得积分10
1分钟前
轩辕剑身完成签到,获得积分0
1分钟前
coolkid完成签到 ,获得积分0
1分钟前
你怎么那么美完成签到,获得积分10
1分钟前
游艺完成签到 ,获得积分10
1分钟前
冬月完成签到 ,获得积分10
1分钟前
薛乎虚完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022