A robust indoor localization method with calibration strategy based on joint distribution adaptation

稳健性(进化) 算法 接头(建筑物) 校准
作者
Yujie Wang,Yi Lei,Yong Zhang,Lu Yao
出处
期刊:Wireless Networks [Springer Nature]
卷期号:27 (3): 1739-1753 被引量:5
标识
DOI:10.1007/s11276-020-02483-0
摘要

Device-free localization (DFL) systems have aroused extensive attention because it is more convenient than device-enabled localization systems, and fingerprint-based localization method is usually used in DFL systems. Although fine-grained information can be provided by the channel state information (CSI), but changes in the environment over time can cause the CSI become different. Therefore, the real-time CSI data can’t match with the data in the fingerprint map established beforehand very well, which can lead to the inaccuracy of the positioning result. This paper presents a DFL system, which adopts transfer learning method to update the fingerprint map and employs the Light Gradient Boosting Machine (LightGBM) algorithm to train the fingerprint map. Wavelet transform is used in this paper to filter the noise in the raw CSI data and the CSI data on a portion of the fingerprint points are collected to update the established fingerprint map by joint distribution adaptation in the update stage. After classifying the CSI data of the testing point by LightGBM, the position coordinate is achieved by the confidence regression method. By using LightGBM, the proposed system can achieve the average distance error of 0.48m, outperforming the result by using eXtreme Gradient Boosting (XGBoost) and Gradient Boost Decision Tree (GBDT). According to the result of the four-week experiment, the average distance error of this system can be decreased by 21% compared with not using the calibration method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Lu采纳,获得30
1秒前
wang完成签到,获得积分20
1秒前
李爱国应助Kris采纳,获得10
2秒前
3秒前
4秒前
4秒前
July完成签到,获得积分10
5秒前
颜云尔完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
wjl发布了新的文献求助10
8秒前
认真丹秋发布了新的文献求助10
10秒前
怕孤独的如凡完成签到 ,获得积分10
10秒前
烟花应助苹果丝采纳,获得10
10秒前
yy00给yy00的求助进行了留言
11秒前
12秒前
香蕉觅云应助犹豫半兰采纳,获得10
12秒前
哈哈恬发布了新的文献求助10
12秒前
星辰大海应助zz采纳,获得30
13秒前
Kris发布了新的文献求助10
13秒前
July发布了新的文献求助10
13秒前
斑其发布了新的文献求助10
13秒前
mjm完成签到 ,获得积分20
14秒前
共享精神应助爱德福采纳,获得10
14秒前
14秒前
丘比特应助含糊的皮卡丘采纳,获得10
15秒前
TonyLee完成签到,获得积分10
16秒前
Lu发布了新的文献求助30
16秒前
16秒前
lllym发布了新的文献求助10
17秒前
17秒前
fahbfafajk发布了新的文献求助20
18秒前
18秒前
18秒前
Jasper应助飞天小女警采纳,获得10
18秒前
胖罐子发布了新的文献求助10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515778
求助须知:如何正确求助?哪些是违规求助? 3098003
关于积分的说明 9237753
捐赠科研通 2792964
什么是DOI,文献DOI怎么找? 1532775
邀请新用户注册赠送积分活动 712297
科研通“疑难数据库(出版商)”最低求助积分说明 707233