Applications of Omics Technologies for Three-DimensionalIn VitroDisease Models

组学 疾病 代谢组学 杠杆(统计) 表观遗传学 蛋白质组学 计算生物学 系统生物学 新兴技术 基因组学 数据科学 生物 生物信息学 计算机科学 医学 人工智能 基因组 病理 DNA甲基化 遗传学 基因表达 基因
作者
Vera M. Pieters,Ileana L. Co,Nila C. Wu,Alison P. McGuigan
出处
期刊:Tissue Engineering Part C-methods [Mary Ann Liebert]
卷期号:27 (3): 183-199 被引量:6
标识
DOI:10.1089/ten.tec.2020.0300
摘要

Omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, multiomics, and integrated modalities, have greatly contributed to our understanding of various diseases by enabling researchers to probe the molecular wiring of cellular systems in a high-throughput and precise manner. With the development of tissue-engineered three-dimensional (3D) in vitro disease models, such as organoids and spheroids, there is potential of integrating omics technologies with 3D disease models to elucidate the complex links between genotype and phenotype. These 3D disease models have been used to model cancer, infectious disease, toxicity, neurological disorders, and others. In this review, we provide an overview of omics technologies, highlight current and emerging studies, discuss the associated experimental design considerations, barriers and challenges of omics technologies, and provide an outlook on the future applications of omics technologies with 3D models. Overall, this review aims to provide a valuable resource for tissue engineers seeking to leverage omics technologies for diving deeper into biological discovery. Impact statement With the emergence of three-dimensional (3D) in vitro disease models, tissue engineers are increasingly interested to investigate these systems to address biological questions related to disease mechanism, drug target discovery, therapy resistance, and more. Omics technologies are a powerful and high-throughput approach, but their application for 3D disease models is not maximally utilized. This review illustrates the achievements and potential of using omics technologies to leverage the full potential of 3D in vitro disease models. This will improve the quality of such models, advance our understanding of disease, and contribute to therapy development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助小明采纳,获得10
1秒前
无花果应助Priseman采纳,获得10
3秒前
Jasper应助欢呼山雁采纳,获得10
5秒前
5秒前
6秒前
lili发布了新的文献求助30
7秒前
ClancyJacky完成签到,获得积分20
9秒前
行走江湖的破忒头完成签到,获得积分0
9秒前
有魅力傲柔完成签到,获得积分20
11秒前
风信子发布了新的文献求助10
11秒前
16秒前
16秒前
18秒前
英俊的铭应助yihaiqin采纳,获得10
18秒前
微笑元气妹完成签到,获得积分10
20秒前
Lucas应助科研通管家采纳,获得10
21秒前
我是老大应助于芋菊采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
xdx应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
22秒前
双黄应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
4399com应助科研通管家采纳,获得10
22秒前
科目三应助心珩采纳,获得10
22秒前
qianqian发布了新的文献求助10
24秒前
SciGPT应助L112233采纳,获得10
25秒前
风信子完成签到,获得积分10
25秒前
灵长类完成签到,获得积分10
25秒前
田様应助suki采纳,获得30
26秒前
27秒前
今后应助luluyang采纳,获得10
28秒前
烈酒一醉方休完成签到 ,获得积分10
29秒前
29秒前
uuu发布了新的文献求助50
31秒前
小二郎应助小尚要加油采纳,获得10
33秒前
爆米花应助优雅惜雪采纳,获得10
35秒前
山城完成签到 ,获得积分10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309867
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512407
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430834
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490