Novel in vitro microfluidic platform for osteocyte mechanotransduction studies

机械转化 破骨细胞 剪应力 微流控 骨细胞 细胞生物学 化学 兰克尔 体外 生物物理学 剪切力 生物医学工程 材料科学 成骨细胞 纳米技术 生物 生物化学 医学 复合材料 激活剂(遗传学) 基因
作者
Liangcheng Xu,Xin Song,Gwennyth Carroll,Lidan You
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:12 (12): 303-310 被引量:4
标识
DOI:10.1093/intbio/zyaa025
摘要

Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
勤恳镜子完成签到,获得积分10
1秒前
che完成签到 ,获得积分10
2秒前
yukky发布了新的文献求助200
2秒前
量子星尘发布了新的文献求助10
4秒前
111完成签到 ,获得积分10
4秒前
4秒前
Vanilla完成签到,获得积分10
4秒前
Beyond完成签到,获得积分10
5秒前
lyu完成签到,获得积分10
5秒前
apollo3232完成签到,获得积分0
5秒前
光亮青柏完成签到 ,获得积分10
5秒前
科研通AI2S应助无尘采纳,获得10
7秒前
我是老大应助无尘采纳,获得10
7秒前
科研通AI6.1应助无尘采纳,获得10
7秒前
科研通AI6.1应助无尘采纳,获得10
7秒前
科研通AI6.1应助无尘采纳,获得10
7秒前
善学以致用应助无尘采纳,获得10
7秒前
Criminology34应助无尘采纳,获得10
7秒前
科研通AI2S应助无尘采纳,获得10
7秒前
黑包包大人完成签到,获得积分10
8秒前
稳重的以珊完成签到 ,获得积分10
11秒前
小居同学完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
白石溪完成签到,获得积分10
14秒前
xiaoyu_li完成签到,获得积分10
16秒前
白云苍狗完成签到,获得积分10
16秒前
17秒前
Dream完成签到 ,获得积分10
17秒前
大知闲闲完成签到 ,获得积分10
18秒前
越野完成签到 ,获得积分10
18秒前
21秒前
轻歌水越完成签到 ,获得积分10
23秒前
wsqg123完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
JAMES完成签到 ,获得积分10
24秒前
Fresh完成签到 ,获得积分10
24秒前
柳大楚发布了新的文献求助10
25秒前
麦芽完成签到,获得积分10
25秒前
雪白的小之完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900