Novel in vitro microfluidic platform for osteocyte mechanotransduction studies

机械转化 破骨细胞 剪应力 微流控 骨细胞 细胞生物学 化学 兰克尔 体外 生物物理学 剪切力 生物医学工程 材料科学 成骨细胞 纳米技术 生物 生物化学 医学 复合材料 基因 激活剂(遗传学)
作者
Liangcheng Xu,Xin Song,Gwennyth Carroll,Lidan You
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:12 (12): 303-310 被引量:4
标识
DOI:10.1093/intbio/zyaa025
摘要

Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻夜香发布了新的文献求助10
刚刚
昊康好完成签到,获得积分10
刚刚
1秒前
yy完成签到,获得积分10
1秒前
2秒前
缓慢天抒完成签到 ,获得积分10
2秒前
科研通AI5应助路之遥兮采纳,获得10
2秒前
爱睡觉的亮亮完成签到,获得积分10
3秒前
圈圈发布了新的文献求助10
3秒前
顾矜应助无聊先知采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
咕咕咕完成签到,获得积分10
4秒前
经法发布了新的文献求助10
5秒前
晚亭完成签到,获得积分10
5秒前
欲望被鬼举报戚薇求助涉嫌违规
6秒前
yangyang发布了新的文献求助10
6秒前
优雅的琳发布了新的文献求助10
7秒前
时光发布了新的文献求助10
7秒前
yuki完成签到,获得积分10
7秒前
南逸然完成签到,获得积分10
7秒前
7秒前
8秒前
HongJiang发布了新的文献求助10
8秒前
8秒前
筱谭完成签到 ,获得积分10
8秒前
guanze完成签到 ,获得积分10
9秒前
zho关闭了zho文献求助
9秒前
ding应助起承转合采纳,获得10
9秒前
10秒前
蛋炒饭不加蛋完成签到,获得积分10
10秒前
酷炫素完成签到,获得积分10
10秒前
阿金发布了新的文献求助10
11秒前
Jasper应助帅气鹭洋采纳,获得10
11秒前
11秒前
明天更好发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678