Novel in vitro microfluidic platform for osteocyte mechanotransduction studies

机械转化 破骨细胞 剪应力 微流控 骨细胞 细胞生物学 化学 兰克尔 体外 生物物理学 剪切力 生物医学工程 材料科学 成骨细胞 纳米技术 生物 生物化学 医学 复合材料 激活剂(遗传学) 基因
作者
Liangcheng Xu,Xin Song,Gwennyth Carroll,Lidan You
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:12 (12): 303-310 被引量:4
标识
DOI:10.1093/intbio/zyaa025
摘要

Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘚嘤丁发布了新的文献求助10
刚刚
纯真的君浩完成签到,获得积分10
刚刚
西西弗斯发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
激动的一手完成签到,获得积分10
1秒前
浮游应助CAI313采纳,获得10
1秒前
科研通AI5应助和谐的敏采纳,获得10
1秒前
小蘑菇应助南笙采纳,获得10
2秒前
2秒前
2秒前
3秒前
朱建强发布了新的文献求助10
3秒前
4秒前
znn发布了新的文献求助10
4秒前
谢谢完成签到 ,获得积分10
4秒前
111111发布了新的文献求助10
4秒前
4秒前
忐忑的王发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
tongitian完成签到,获得积分10
6秒前
6秒前
ky废品完成签到,获得积分10
6秒前
温暖成风完成签到,获得积分20
6秒前
愉快的语山应助午夜煎饼采纳,获得10
7秒前
浮游应助午夜煎饼采纳,获得10
7秒前
GGWEN完成签到,获得积分10
8秒前
英俊的铭应助黄文龙采纳,获得10
8秒前
8秒前
方梓言完成签到 ,获得积分20
9秒前
帅帅子发布了新的文献求助10
9秒前
Sandro完成签到,获得积分10
9秒前
谨慎的草丛完成签到,获得积分10
9秒前
9秒前
9秒前
奋斗幻姬完成签到,获得积分10
10秒前
玛卡巴卡发布了新的文献求助10
10秒前
tongitian发布了新的文献求助10
10秒前
lan发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885327
求助须知:如何正确求助?哪些是违规求助? 4170219
关于积分的说明 12940950
捐赠科研通 3931044
什么是DOI,文献DOI怎么找? 2156822
邀请新用户注册赠送积分活动 1175208
关于科研通互助平台的介绍 1079841