Novel in vitro microfluidic platform for osteocyte mechanotransduction studies

机械转化 破骨细胞 剪应力 微流控 骨细胞 细胞生物学 化学 兰克尔 体外 生物物理学 剪切力 生物医学工程 材料科学 成骨细胞 纳米技术 生物 生物化学 医学 复合材料 激活剂(遗传学) 基因
作者
Liangcheng Xu,Xin Song,Gwennyth Carroll,Lidan You
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:12 (12): 303-310 被引量:4
标识
DOI:10.1093/intbio/zyaa025
摘要

Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111111112发布了新的文献求助10
刚刚
1秒前
lxdhs完成签到,获得积分10
1秒前
传奇3应助可靠的千愁采纳,获得10
1秒前
1秒前
Rutin完成签到,获得积分20
2秒前
2秒前
2秒前
11完成签到,获得积分20
4秒前
Rutin发布了新的文献求助10
5秒前
SciGPT应助放克俊逸采纳,获得10
5秒前
5秒前
忧心的雁发布了新的文献求助10
6秒前
6秒前
土土不吃土应助fan采纳,获得10
6秒前
6秒前
郑zz发布了新的文献求助10
6秒前
威武绮彤发布了新的文献求助10
6秒前
6秒前
6秒前
传奇3应助HY521采纳,获得10
7秒前
和谐诗柳完成签到 ,获得积分10
7秒前
violet3zz发布了新的文献求助10
9秒前
9秒前
9秒前
11发布了新的文献求助30
10秒前
10秒前
10秒前
11秒前
hjrxby发布了新的文献求助10
11秒前
11秒前
12秒前
hmhu发布了新的文献求助30
12秒前
12秒前
Rita发布了新的文献求助10
13秒前
瓦罐完成签到 ,获得积分10
13秒前
XHH完成签到 ,获得积分10
13秒前
喜悦斑马发布了新的文献求助10
13秒前
小十二发布了新的文献求助30
13秒前
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170026
求助须知:如何正确求助?哪些是违规求助? 2821229
关于积分的说明 7933284
捐赠科研通 2481540
什么是DOI,文献DOI怎么找? 1321856
科研通“疑难数据库(出版商)”最低求助积分说明 633422
版权声明 602562