Novel in vitro microfluidic platform for osteocyte mechanotransduction studies

机械转化 破骨细胞 剪应力 微流控 骨细胞 细胞生物学 化学 兰克尔 体外 生物物理学 剪切力 生物医学工程 材料科学 成骨细胞 纳米技术 生物 生物化学 医学 复合材料 激活剂(遗传学) 基因
作者
Liangcheng Xu,Xin Song,Gwennyth Carroll,Lidan You
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:12 (12): 303-310 被引量:4
标识
DOI:10.1093/intbio/zyaa025
摘要

Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青云天发布了新的文献求助10
刚刚
香香发布了新的文献求助10
刚刚
刚刚
2秒前
3秒前
Rainy发布了新的文献求助10
4秒前
5秒前
xaogny发布了新的文献求助10
5秒前
战战兢兢发布了新的文献求助10
5秒前
梦秋思完成签到,获得积分10
5秒前
上官若男应助mumu采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
天天快乐应助mumumuzzz采纳,获得10
7秒前
传奇3应助xunanlei采纳,获得10
8秒前
Al完成签到,获得积分10
8秒前
寒舒发布了新的文献求助10
9秒前
万能图书馆应助xuan采纳,获得10
9秒前
旺仔发布了新的文献求助10
10秒前
10秒前
bella发布了新的文献求助30
10秒前
11秒前
KYT2025发布了新的文献求助10
12秒前
PEITON发布了新的文献求助10
12秒前
dyyisash完成签到 ,获得积分10
13秒前
乐乐应助邵振启采纳,获得10
13秒前
14秒前
16秒前
16秒前
16秒前
SY1005发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
情怀应助星月夜采纳,获得10
18秒前
coco发布了新的文献求助10
18秒前
大模型应助奥利奥麦旋风采纳,获得10
18秒前
18秒前
桐桐应助你好CDY采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745005
求助须知:如何正确求助?哪些是违规求助? 5423528
关于积分的说明 15351656
捐赠科研通 4885168
什么是DOI,文献DOI怎么找? 2626376
邀请新用户注册赠送积分活动 1575111
关于科研通互助平台的介绍 1531862