Infrared Action Detection in the Dark via Cross-Stream Attention Mechanism

计算机科学 判别式 分类器(UML) 人工智能 杂乱 光流 代码段 特征提取 模式识别(心理学) 红外线的 目标检测 计算机视觉 图像(数学) 情报检索 雷达 电信 物理 光学
作者
Xu Chen,Chenqiang Gao,Chaoyu Li,Yi Yang,Deyu Meng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 288-300 被引量:22
标识
DOI:10.1109/tmm.2021.3050069
摘要

Action detection plays an important role in the field of video understanding and attracts considerable attention in the last decade. However, current action detection methods are mainly based on visible videos, and few of them consider scenes with low-light, where actions are difficult to be detected by existing methods, or even by human eyes. Compared with visible videos, infrared videos are more suitable for the dark environment and resistant to background clutter. In this paper, we investigate the temporal action detection problem in the dark by using infrared videos, which is, to the best of our knowledge, the first attempt in the action detection community. Our model takes the whole video as input, a Flow Estimation Network (FEN) is employed to generate the optical flow for infrared data, and it is optimized with the whole network to obtain action-related motion representations. After feature extraction, the infrared stream and flow stream are fed into a Selective Cross-stream Attention (SCA) module to narrow the performance gap between infrared and visible videos. The SCA emphasizes informative snippets and focuses on the more discriminative stream automatically. Then we adopt a snippet-level classifier to obtain action scores for all snippets and link continuous snippets into final detection results. All these modules are trained in an end-to-end manner. We collect an Infrared action Detection (InfDet) dataset obtained in the dark and conduct extensive experiments to verify the effectiveness of the proposed method. Experimental results show that our proposed method surpasses the state-of-the-art temporal action detection methods designed for visible videos, and it also achieves the best performance compared with other infrared action recognition methods on both InfAR and Infrared-Visible datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘映易完成签到,获得积分0
4秒前
冷艳大侠完成签到,获得积分10
4秒前
可飞完成签到,获得积分10
7秒前
布蓝图完成签到 ,获得积分10
7秒前
橙汁摇一摇完成签到 ,获得积分10
14秒前
kanong完成签到,获得积分0
17秒前
科研通AI5应助忧心的雁采纳,获得10
17秒前
科研通AI2S应助默默尔安采纳,获得10
17秒前
小糊涂完成签到 ,获得积分10
17秒前
joeqin完成签到,获得积分10
19秒前
dreamwalk完成签到 ,获得积分10
20秒前
Wen完成签到 ,获得积分10
20秒前
25秒前
藜藜藜在乎你完成签到 ,获得积分10
26秒前
红薯干完成签到,获得积分10
27秒前
沿途东行完成签到 ,获得积分10
28秒前
30秒前
忧心的雁发布了新的文献求助10
31秒前
Cold-Drink-Shop完成签到,获得积分10
34秒前
雪山飞龙发布了新的文献求助10
35秒前
微笑驳回了SciGPT应助
41秒前
42秒前
微卫星不稳定完成签到 ,获得积分10
49秒前
李新光完成签到 ,获得积分10
54秒前
合适的寄灵完成签到 ,获得积分10
54秒前
LeungYM完成签到 ,获得积分10
58秒前
啊啊啊啊宇呀完成签到 ,获得积分10
1分钟前
雨前知了完成签到,获得积分10
1分钟前
和平完成签到 ,获得积分10
1分钟前
留胡子的曼香完成签到 ,获得积分10
1分钟前
l老王完成签到 ,获得积分10
1分钟前
zqlxueli完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助30
1分钟前
轻松念蕾完成签到,获得积分10
1分钟前
叶问夏完成签到 ,获得积分10
1分钟前
haochi完成签到,获得积分10
1分钟前
Ava应助Sandy采纳,获得10
1分钟前
为霄完成签到 ,获得积分10
1分钟前
echo完成签到 ,获得积分10
1分钟前
曾珍完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555826
求助须知:如何正确求助?哪些是违规求助? 3131451
关于积分的说明 9391147
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890