A CT-Based Automated Algorithm for Airway Segmentation Using Freeze-and-Grow Propagation and Deep Learning

分割 算法 计算机科学 深度学习 人工智能 参数统计 再现性 图像分割 机器学习 数学 统计
作者
Syed Ahmed Nadeem,Eric A. Hoffman,Jessica C. Sieren,Alejandro P. Comellas,Surya P. Bhatt,Igor Barjaktarević,Fereidoun Abtin,Punam K. Saha
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (1): 405-418 被引量:25
标识
DOI:10.1109/tmi.2020.3029013
摘要

Chronic obstructive pulmonary disease (COPD) is a common lung disease, and quantitative CT-based bronchial phenotypes are of increasing interest as a means of exploring COPD sub-phenotypes, establishing disease progression, and evaluating intervention outcomes. Reliable, fully automated, and accurate segmentation of pulmonary airway trees is critical to such exploration. We present a novel approach of multi-parametric freeze-and-grow (FG) propagation which starts with a conservative segmentation parameter and captures finer details through iterative parameter relaxation. First, a CT intensity-based FG algorithm is developed and applied for airway tree segmentation. A more efficient version is produced using deep learning methods generating airway lumen likelihood maps from CT images, which are input to the FG algorithm. Both CT intensity- and deep learning-based algorithms are fully automated, and their performance, in terms of repeat scan reproducibility, accuracy, and leakages, is evaluated and compared with results from several state-of-the-art methods including an industry-standard one, where segmentation results were manually reviewed and corrected. Both new algorithms show a reproducibility of 95% or higher for total lung capacity (TLC) repeat CT scans. Experiments on TLC CT scans from different imaging sites at standard and low radiation dosages show that both new algorithms outperform the other methods in terms of leakages and branch-level accuracy. Considering the performance and execution times, the deep learning-based FG algorithm is a fully automated option for large multi-site studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zf123关注了科研通微信公众号
1秒前
ycg发布了新的文献求助10
1秒前
Shrimp完成签到 ,获得积分10
1秒前
2秒前
Anoxia完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
木木发布了新的文献求助10
5秒前
毕十三发布了新的文献求助30
8秒前
8秒前
10秒前
11秒前
共享精神应助Arthur采纳,获得10
11秒前
香蕉觅云应助瞿选葵采纳,获得10
12秒前
12秒前
13秒前
shufessm完成签到,获得积分0
14秒前
木木完成签到,获得积分20
14秒前
大魁发布了新的文献求助10
15秒前
深情安青应助Mio采纳,获得10
15秒前
壁虎君完成签到,获得积分10
16秒前
情怀应助调皮的如凡采纳,获得10
17秒前
18秒前
奋斗的荆发布了新的文献求助10
21秒前
完美世界应助平常的海露采纳,获得10
22秒前
pcm完成签到 ,获得积分10
22秒前
归尘发布了新的文献求助10
25秒前
李海平发布了新的文献求助10
26秒前
26秒前
专注的晋鹏完成签到,获得积分10
28秒前
28秒前
南浔完成签到 ,获得积分10
29秒前
小唐发布了新的文献求助10
32秒前
materials_完成签到,获得积分10
32秒前
33秒前
奋斗的荆完成签到,获得积分10
33秒前
Zz完成签到,获得积分10
35秒前
35秒前
今后应助Jennie采纳,获得10
36秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462542
求助须知:如何正确求助?哪些是违规求助? 3056077
关于积分的说明 9050722
捐赠科研通 2745731
什么是DOI,文献DOI怎么找? 1506546
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677