Multi-Objective Redundancy Allocation for Multi-State System Design Under Epistemic Uncertainty of Component States

冗余(工程) 数学优化 计算机科学 帕累托原理 组分(热力学) 分类 不确定度量化 可靠性(半导体) 多目标优化 集合(抽象数据类型) 数学 算法 机器学习 程序设计语言 功率(物理) 物理 操作系统 热力学 量子力学
作者
Tangfan Xiahou,Yu Liu,Qin Zhang
出处
期刊:Journal of Mechanical Design 卷期号:142 (11) 被引量:14
标识
DOI:10.1115/1.4046914
摘要

Abstract Multi-state is a typical characteristic of engineered systems. Most existing studies of redundancy allocation problems (RAPs) for multi-state system (MSS) design assume that the state probabilities of redundant components are precisely known. However, due to lack of knowledge and/or ambiguous judgements from engineers/experts, the epistemic uncertainty associated with component states cannot be completely avoided and it is befitting to be represented as belief quantities. In this paper, a multi-objective RAP is developed for MSS design under the belief function theory. To address the epistemic uncertainty propagation from components to system reliability evaluation, an evidential network (EN) model is introduced to evaluate the reliability bounds of an MSS. The resulting multi-objective design optimization problem is resolved via a modified non-dominated sorting genetic algorithm II (NSGA-II), in which a set of new Pareto dominance criteria is put forth to compare any pair of feasible solutions under the belief function theory. A numerical case along with a SCADA system design is exemplified to demonstrate the efficiency of the EN model and the modified NSGA-II. As observed in our study, the EN model can properly handle the uncertainty propagation and achieve narrower reliability bounds than that of the existing methods. More importantly, the original nested design optimization formulation can be simplified into a one-stage optimization model by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梅倪完成签到,获得积分10
6秒前
Jiping Ni发布了新的文献求助10
6秒前
迷路海蓝发布了新的文献求助10
9秒前
我要发论文完成签到,获得积分10
10秒前
斯文尔白完成签到 ,获得积分10
11秒前
中和皇极完成签到,获得积分0
11秒前
11秒前
13秒前
14秒前
一个西瓜发布了新的文献求助10
17秒前
白什么冰发布了新的文献求助10
18秒前
传统的萝发布了新的文献求助10
20秒前
21秒前
田一完成签到 ,获得积分10
22秒前
24秒前
健康的绮晴完成签到,获得积分10
24秒前
小于发布了新的文献求助10
25秒前
Ronald完成签到,获得积分10
26秒前
香蕉觅云应助lxxy123采纳,获得10
27秒前
星辰大海应助小新采纳,获得10
30秒前
大模型应助传统的萝采纳,获得10
33秒前
小羊发布了新的文献求助10
33秒前
35秒前
混学家发布了新的文献求助10
36秒前
瘦瘦完成签到,获得积分10
37秒前
诸觅双完成签到 ,获得积分10
39秒前
40秒前
瘦瘦发布了新的文献求助10
40秒前
41秒前
qingniujushi完成签到,获得积分10
41秒前
慕青应助ywq采纳,获得10
43秒前
陈qy发布了新的文献求助10
46秒前
小新发布了新的文献求助10
46秒前
MeetAgainLZH发布了新的文献求助10
48秒前
迷路海蓝完成签到,获得积分10
48秒前
51秒前
51秒前
hardworkcd应助周周采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945967
关于积分的说明 8527797
捐赠科研通 2621588
什么是DOI,文献DOI怎么找? 1433891
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637