已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Planning for Medical Emergency Transportation Vehicles during Natural Disasters

自然灾害 计算机科学 运输工程 医疗急救 自然(考古学) 环境规划 运筹学 环境科学 医学 历史 工程类 地理 气象学 考古
作者
Hesam Adrang,Ali Bozorgi-Amiri,Kaveh Khalili‐Damghani,Reza Tavakkoli‐Moghaddam
出处
期刊:DOAJ: Directory of Open Access Journals - DOAJ 被引量:3
标识
DOI:10.22094/joie.2020.688.1455
摘要

One of the main critical steps that should be taken during natural disasters is the assignment and distribution of resources among affected people. In such situations, this can save many lives. Determining the demands for critical items (i.e., the number of injured people) is very important. Accordingly, a number of casualties and injured people have to be known during a disaster. Obtaining an acceptable estimation of the number of casualties adds to the complexity of the problem. In this paper, a location-routing problem is discussed for urgent therapeutic services during disasters. The problem is formulated as a bi-objective Mixed-Integer Linear Programming (MILP) model. The objectives are to concurrently minimize the time of offering relief items to the affected people and minimize the total costs. The costs include those related to locations and transportation means (e.g., ambulances and helicopters) that are used to carry medical personnel and patients. To address the bi-objectiveness and verify the efficiency and applicability of the proposed model, the e-constraint method is employed to solve several randomly-generated problems with CLEPX solver in GAMS. The obtained results include the objective functions, the number of the required facility, and the trade-offs between objectives. Then, the parameter of demands (i.e., number of casualties), which has the most important role, is examined using a sensitivity analysis and the managerial insights are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
科研通AI5应助干净初彤采纳,获得10
8秒前
9秒前
错误的是饭完成签到,获得积分10
9秒前
嗷嗷发布了新的文献求助20
10秒前
江月年完成签到 ,获得积分10
10秒前
科研通AI5应助黒面包采纳,获得10
12秒前
12秒前
核桃花生奶兔完成签到 ,获得积分10
14秒前
14秒前
14秒前
在水一方应助英勇的灯泡采纳,获得10
14秒前
默默的西牛完成签到,获得积分10
16秒前
16秒前
酷波er应助diee采纳,获得10
17秒前
善学以致用应助秋千采纳,获得10
17秒前
Kk完成签到,获得积分10
19秒前
19秒前
19秒前
龙哥哥Antony完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
kiwi完成签到 ,获得积分10
23秒前
25秒前
干净初彤发布了新的文献求助10
26秒前
26秒前
文献互助达人哈哈哈完成签到,获得积分10
26秒前
27秒前
谷高高完成签到 ,获得积分10
27秒前
科目三应助赵雪采纳,获得10
27秒前
27秒前
28秒前
木子niko发布了新的文献求助10
29秒前
29秒前
嘻嘻嘻关注了科研通微信公众号
29秒前
黒面包发布了新的文献求助10
30秒前
ggn发布了新的文献求助10
31秒前
ychao应助钟博士采纳,获得10
32秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009