A brief review of magnetic anomaly detection

地球磁场 磁异常 异常(物理) 物理 噪音(视频) 计算机科学 领域(数学) 磁场 地球物理学 磁强计 大地测量学 地质学 计算机视觉 数学 凝聚态物理 量子力学 图像(数学) 纯数学
作者
Yue Zhao,Jun hai Zhang,Jia Hui Li,Shuangqiang Liu,Pei xian Miao,Yan SHI,En Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:52
标识
DOI:10.1088/1361-6501/abd055
摘要

The geomagnetic field is the main magnetic field on the surface of the Earth, and its value is generally much larger than that of ferromagnetic objects. The existence of a geomagnetic field makes the ferromagnetic material magnetized, and the magnetized field will make the local total magnetic field abnormal, so it is called an anomalous magnetic field. This unusual magnetic field is a necessary condition for conducting magnetic anomaly detection (MAD). MAD is a widely used passive method for magnetic target detection, and its applications include surface ship target detection, the monitoring of underwater moving targets, land target detection and the identification of seismic activity for metal mining. MAD technology uses a high-sensitivity magnetometer to measure the target magnetic field. The magnetic field data are used to calculate the position, velocity, volume and other parameters of the target to identify and localize the ferromagnetic target. It is of great significance to study MAD data based on geomagnetic background. This paper reviews the MAD methods proposed by researchers in recent years and summarizes them into two categories. One is target based, and the other is noise based. The target-based group of detection methods involves typical magnetic search systems based on the assumption that the magnetometer and the target move relative to each other, which applies to the case where the target motion obeys a specific tracking time mode. The noise-based detection methods are based on statistical analyses of magnetometer noise and are suitable for situations in which assumptions about the mutual motion of the target and the magnetometer cannot be made. The magnetic dipole model is introduced in the second part of the paper, and then an algorithm based on the standard orthogonal basis function (OBF) decomposition is proposed. The algorithm parallels the target to a magnetic dipole and decomposes it into a linear combination of several standard OBFs. Solving for the coefficients of the basis function yields the signal energy function in the basis function space. The results show that the signal-to-noise ratio of the data processed by the OBF algorithm is significantly improved. The OBF can be further optimized; for example, when using a single magnetometer to conduct MAD, the five OBFs can be simplified to three OBFs; to locate the target more accurately when using two magnetometers to form the gradient magnetometer, the five OBFs can be simplified into four OBFs. The OBF algorithm is not very effective in the detection of non-Gaussian white noise, soa model-based auto-regression method with white filtering can be used. In the third part of the paper, four methods based on noise detection are introduced in detail: the minimum entropy filtering method, the high-order crossing MAD method, the stochastic resonance method and wavelet transform. Their respective principles and detection sensitivities are discussed in detail. At the end of the paper, the MAD methods are summarized, their advantages and disadvantages are discussed, and the future development of MAD is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫薰完成签到,获得积分10
2秒前
CodeCraft应助大气的人雄采纳,获得10
4秒前
叕叕完成签到,获得积分10
5秒前
senli2018发布了新的文献求助10
8秒前
9秒前
丘比特应助莓莓采纳,获得20
11秒前
锦瑟完成签到 ,获得积分10
11秒前
Talha发布了新的文献求助10
13秒前
13秒前
酥瓜完成签到 ,获得积分10
15秒前
呆萌雁玉完成签到,获得积分10
15秒前
学术laji发布了新的文献求助10
18秒前
healthy发布了新的文献求助10
19秒前
19秒前
元舒甜发布了新的文献求助10
19秒前
21秒前
22秒前
CodeCraft应助weiyi采纳,获得10
22秒前
22秒前
GaN完成签到,获得积分20
23秒前
24秒前
24秒前
Llllllllily完成签到,获得积分10
24秒前
受伤问凝完成签到 ,获得积分10
24秒前
lili发布了新的文献求助10
25秒前
SCI又中了发布了新的文献求助10
26秒前
27秒前
南汐寒笙关注了科研通微信公众号
27秒前
28秒前
GaN发布了新的文献求助10
28秒前
犬来八荒发布了新的文献求助10
28秒前
乐乐发布了新的文献求助30
29秒前
dmq发布了新的文献求助10
29秒前
30秒前
二丙发布了新的文献求助30
31秒前
32秒前
weiyi完成签到,获得积分10
33秒前
wyz完成签到,获得积分10
33秒前
34秒前
杨武天一发布了新的文献求助10
34秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008