A brief review of magnetic anomaly detection

地球磁场 磁异常 异常(物理) 物理 噪音(视频) 计算机科学 领域(数学) 磁场 地球物理学 磁强计 大地测量学 地质学 计算机视觉 数学 凝聚态物理 量子力学 图像(数学) 纯数学
作者
Yue Zhao,Jun hai Zhang,Jia Hui Li,Shuangqiang Liu,Pei xian Miao,Shi Yan,En Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:28
标识
DOI:10.1088/1361-6501/abd055
摘要

The geomagnetic field is the main magnetic field on the surface of the Earth, and its value is generally much larger than that of ferromagnetic objects. The existence of a geomagnetic field makes the ferromagnetic material magnetized, and the magnetized field will make the local total magnetic field abnormal, so it is called an anomalous magnetic field. This unusual magnetic field is a necessary condition for conducting magnetic anomaly detection (MAD). MAD is a widely used passive method for magnetic target detection, and its applications include surface ship target detection, the monitoring of underwater moving targets, land target detection and the identification of seismic activity for metal mining. MAD technology uses a high-sensitivity magnetometer to measure the target magnetic field. The magnetic field data are used to calculate the position, velocity, volume and other parameters of the target to identify and localize the ferromagnetic target. It is of great significance to study MAD data based on geomagnetic background. This paper reviews the MAD methods proposed by researchers in recent years and summarizes them into two categories. One is target based, and the other is noise based. The target-based group of detection methods involves typical magnetic search systems based on the assumption that the magnetometer and the target move relative to each other, which applies to the case where the target motion obeys a specific tracking time mode. The noise-based detection methods are based on statistical analyses of magnetometer noise and are suitable for situations in which assumptions about the mutual motion of the target and the magnetometer cannot be made. The magnetic dipole model is introduced in the second part of the paper, and then an algorithm based on the standard orthogonal basis function (OBF) decomposition is proposed. The algorithm parallels the target to a magnetic dipole and decomposes it into a linear combination of several standard OBFs. Solving for the coefficients of the basis function yields the signal energy function in the basis function space. The results show that the signal-to-noise ratio of the data processed by the OBF algorithm is significantly improved. The OBF can be further optimized; for example, when using a single magnetometer to conduct MAD, the five OBFs can be simplified to three OBFs; to locate the target more accurately when using two magnetometers to form the gradient magnetometer, the five OBFs can be simplified into four OBFs. The OBF algorithm is not very effective in the detection of non-Gaussian white noise, soa model-based auto-regression method with white filtering can be used. In the third part of the paper, four methods based on noise detection are introduced in detail: the minimum entropy filtering method, the high-order crossing MAD method, the stochastic resonance method and wavelet transform. Their respective principles and detection sensitivities are discussed in detail. At the end of the paper, the MAD methods are summarized, their advantages and disadvantages are discussed, and the future development of MAD is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热芝完成签到,获得积分10
1秒前
嘒彼小星完成签到 ,获得积分10
1秒前
1秒前
哭泣的翠丝完成签到,获得积分10
2秒前
2秒前
jennyyu完成签到,获得积分10
2秒前
terence完成签到,获得积分10
2秒前
3秒前
3秒前
HopeStar发布了新的文献求助10
3秒前
马保国123发布了新的文献求助10
3秒前
Hello应助蓝莓松饼采纳,获得10
4秒前
4秒前
优秀的枫发布了新的文献求助10
4秒前
4秒前
KDC完成签到,获得积分10
4秒前
MuMu完成签到,获得积分10
5秒前
5秒前
Yana1311完成签到,获得积分10
6秒前
lkc发布了新的文献求助10
6秒前
大气飞丹完成签到 ,获得积分10
6秒前
调研昵称发布了新的文献求助10
6秒前
yu完成签到 ,获得积分10
7秒前
Lvj发布了新的文献求助10
7秒前
英俊的铭应助lanjq兰坚强采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
含蓄的鹤发布了新的文献求助10
8秒前
8秒前
受伤访波完成签到,获得积分10
9秒前
香蕉觅云应助亻鱼采纳,获得10
9秒前
欢欢发布了新的文献求助10
9秒前
慕青应助研友_Z1WvKL采纳,获得10
9秒前
9秒前
多情怜蕾完成签到,获得积分10
10秒前
10秒前
AD发布了新的文献求助10
11秒前
谢朝邦发布了新的文献求助10
11秒前
科研通AI5应助玲珑油豆腐采纳,获得10
11秒前
11秒前
wjh发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759