A brief review of magnetic anomaly detection

地球磁场 磁异常 异常(物理) 物理 噪音(视频) 计算机科学 领域(数学) 磁场 地球物理学 磁强计 大地测量学 地质学 计算机视觉 数学 凝聚态物理 量子力学 图像(数学) 纯数学
作者
Yue Zhao,Jun hai Zhang,Jia Hui Li,Shuangqiang Liu,Pei xian Miao,Yan SHI,En Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:52
标识
DOI:10.1088/1361-6501/abd055
摘要

The geomagnetic field is the main magnetic field on the surface of the Earth, and its value is generally much larger than that of ferromagnetic objects. The existence of a geomagnetic field makes the ferromagnetic material magnetized, and the magnetized field will make the local total magnetic field abnormal, so it is called an anomalous magnetic field. This unusual magnetic field is a necessary condition for conducting magnetic anomaly detection (MAD). MAD is a widely used passive method for magnetic target detection, and its applications include surface ship target detection, the monitoring of underwater moving targets, land target detection and the identification of seismic activity for metal mining. MAD technology uses a high-sensitivity magnetometer to measure the target magnetic field. The magnetic field data are used to calculate the position, velocity, volume and other parameters of the target to identify and localize the ferromagnetic target. It is of great significance to study MAD data based on geomagnetic background. This paper reviews the MAD methods proposed by researchers in recent years and summarizes them into two categories. One is target based, and the other is noise based. The target-based group of detection methods involves typical magnetic search systems based on the assumption that the magnetometer and the target move relative to each other, which applies to the case where the target motion obeys a specific tracking time mode. The noise-based detection methods are based on statistical analyses of magnetometer noise and are suitable for situations in which assumptions about the mutual motion of the target and the magnetometer cannot be made. The magnetic dipole model is introduced in the second part of the paper, and then an algorithm based on the standard orthogonal basis function (OBF) decomposition is proposed. The algorithm parallels the target to a magnetic dipole and decomposes it into a linear combination of several standard OBFs. Solving for the coefficients of the basis function yields the signal energy function in the basis function space. The results show that the signal-to-noise ratio of the data processed by the OBF algorithm is significantly improved. The OBF can be further optimized; for example, when using a single magnetometer to conduct MAD, the five OBFs can be simplified to three OBFs; to locate the target more accurately when using two magnetometers to form the gradient magnetometer, the five OBFs can be simplified into four OBFs. The OBF algorithm is not very effective in the detection of non-Gaussian white noise, soa model-based auto-regression method with white filtering can be used. In the third part of the paper, four methods based on noise detection are introduced in detail: the minimum entropy filtering method, the high-order crossing MAD method, the stochastic resonance method and wavelet transform. Their respective principles and detection sensitivities are discussed in detail. At the end of the paper, the MAD methods are summarized, their advantages and disadvantages are discussed, and the future development of MAD is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
善学以致用应助lorentzh采纳,获得10
1秒前
乐乐应助杨辅政采纳,获得10
2秒前
233发布了新的文献求助10
3秒前
3秒前
潇涯发布了新的文献求助30
4秒前
CNAxiaozhu7应助linlin采纳,获得10
4秒前
5秒前
5秒前
6秒前
达雨应助SiqiZhang采纳,获得10
6秒前
8秒前
OneHundred发布了新的文献求助10
8秒前
嘉嘉sone发布了新的文献求助10
9秒前
深情安青应助小鲨鱼采纳,获得10
9秒前
文艺紫菜发布了新的文献求助10
10秒前
大个应助重要的汽车采纳,获得30
10秒前
深情安青应助唐白云采纳,获得10
10秒前
科研通AI6应助慈祥的鑫采纳,获得10
10秒前
zej完成签到,获得积分10
12秒前
12秒前
潇涯完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
Anna完成签到,获得积分10
16秒前
16秒前
小新给小新的求助进行了留言
16秒前
Wawoo发布了新的文献求助10
16秒前
17秒前
斯文败类应助勤奋的绝义采纳,获得10
17秒前
lorentzh发布了新的文献求助10
18秒前
茜茜公主发布了新的文献求助10
19秒前
杨辅政完成签到,获得积分20
19秒前
小二郎应助坚强南烟采纳,获得10
20秒前
852应助奋斗的孤兰采纳,获得10
20秒前
20秒前
sevenhill应助认真的蜜粉采纳,获得20
22秒前
lcy发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557221
求助须知:如何正确求助?哪些是违规求助? 4642435
关于积分的说明 14667964
捐赠科研通 4583782
什么是DOI,文献DOI怎么找? 2514417
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459402