A brief review of magnetic anomaly detection

地球磁场 磁异常 异常(物理) 物理 噪音(视频) 计算机科学 领域(数学) 磁场 地球物理学 磁强计 大地测量学 地质学 计算机视觉 数学 凝聚态物理 量子力学 图像(数学) 纯数学
作者
Yue Zhao,Jun hai Zhang,Jia Hui Li,Shuangqiang Liu,Pei xian Miao,Yan SHI,En Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:53
标识
DOI:10.1088/1361-6501/abd055
摘要

The geomagnetic field is the main magnetic field on the surface of the Earth, and its value is generally much larger than that of ferromagnetic objects. The existence of a geomagnetic field makes the ferromagnetic material magnetized, and the magnetized field will make the local total magnetic field abnormal, so it is called an anomalous magnetic field. This unusual magnetic field is a necessary condition for conducting magnetic anomaly detection (MAD). MAD is a widely used passive method for magnetic target detection, and its applications include surface ship target detection, the monitoring of underwater moving targets, land target detection and the identification of seismic activity for metal mining. MAD technology uses a high-sensitivity magnetometer to measure the target magnetic field. The magnetic field data are used to calculate the position, velocity, volume and other parameters of the target to identify and localize the ferromagnetic target. It is of great significance to study MAD data based on geomagnetic background. This paper reviews the MAD methods proposed by researchers in recent years and summarizes them into two categories. One is target based, and the other is noise based. The target-based group of detection methods involves typical magnetic search systems based on the assumption that the magnetometer and the target move relative to each other, which applies to the case where the target motion obeys a specific tracking time mode. The noise-based detection methods are based on statistical analyses of magnetometer noise and are suitable for situations in which assumptions about the mutual motion of the target and the magnetometer cannot be made. The magnetic dipole model is introduced in the second part of the paper, and then an algorithm based on the standard orthogonal basis function (OBF) decomposition is proposed. The algorithm parallels the target to a magnetic dipole and decomposes it into a linear combination of several standard OBFs. Solving for the coefficients of the basis function yields the signal energy function in the basis function space. The results show that the signal-to-noise ratio of the data processed by the OBF algorithm is significantly improved. The OBF can be further optimized; for example, when using a single magnetometer to conduct MAD, the five OBFs can be simplified to three OBFs; to locate the target more accurately when using two magnetometers to form the gradient magnetometer, the five OBFs can be simplified into four OBFs. The OBF algorithm is not very effective in the detection of non-Gaussian white noise, soa model-based auto-regression method with white filtering can be used. In the third part of the paper, four methods based on noise detection are introduced in detail: the minimum entropy filtering method, the high-order crossing MAD method, the stochastic resonance method and wavelet transform. Their respective principles and detection sensitivities are discussed in detail. At the end of the paper, the MAD methods are summarized, their advantages and disadvantages are discussed, and the future development of MAD is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
1秒前
Muth发布了新的文献求助10
3秒前
uu完成签到 ,获得积分10
4秒前
ayayaya完成签到 ,获得积分10
5秒前
青葱鱼块完成签到 ,获得积分10
6秒前
哇哈哈关注了科研通微信公众号
6秒前
7秒前
唐一完成签到,获得积分10
7秒前
84W1yX完成签到,获得积分10
8秒前
9秒前
无极微光应助aliderichang采纳,获得20
9秒前
慕青应助wang采纳,获得10
10秒前
共享精神应助美满的红酒采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
年轻绮波完成签到,获得积分10
12秒前
我来也完成签到 ,获得积分10
13秒前
一个西藏发布了新的文献求助10
15秒前
孙孙发布了新的文献求助10
16秒前
歇洛克驳回了852应助
16秒前
Tian完成签到,获得积分10
16秒前
Hello应助Snoopy采纳,获得10
16秒前
fge完成签到,获得积分10
18秒前
……发布了新的文献求助10
18秒前
TTLOVEDXX完成签到,获得积分10
18秒前
20秒前
小二郎应助Alarack采纳,获得10
20秒前
蟹治猿完成签到 ,获得积分10
21秒前
jitianxing发布了新的文献求助10
24秒前
酷波er应助猪猪hero采纳,获得10
24秒前
pluto应助猪猪hero采纳,获得10
24秒前
危机的阁应助猪猪hero采纳,获得30
24秒前
Lucas应助猪猪hero采纳,获得10
24秒前
24秒前
25秒前
kytzh发布了新的文献求助30
26秒前
俭朴的易烟完成签到,获得积分10
26秒前
核桃完成签到,获得积分10
29秒前
菜菜完成签到,获得积分10
29秒前
29秒前
Snoopy发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832