亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A brief review of magnetic anomaly detection

地球磁场 磁异常 异常(物理) 物理 噪音(视频) 计算机科学 领域(数学) 磁场 地球物理学 磁强计 大地测量学 地质学 计算机视觉 数学 凝聚态物理 量子力学 图像(数学) 纯数学
作者
Yue Zhao,Jun hai Zhang,Jia Hui Li,Shuangqiang Liu,Pei xian Miao,Yan SHI,En Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:52
标识
DOI:10.1088/1361-6501/abd055
摘要

The geomagnetic field is the main magnetic field on the surface of the Earth, and its value is generally much larger than that of ferromagnetic objects. The existence of a geomagnetic field makes the ferromagnetic material magnetized, and the magnetized field will make the local total magnetic field abnormal, so it is called an anomalous magnetic field. This unusual magnetic field is a necessary condition for conducting magnetic anomaly detection (MAD). MAD is a widely used passive method for magnetic target detection, and its applications include surface ship target detection, the monitoring of underwater moving targets, land target detection and the identification of seismic activity for metal mining. MAD technology uses a high-sensitivity magnetometer to measure the target magnetic field. The magnetic field data are used to calculate the position, velocity, volume and other parameters of the target to identify and localize the ferromagnetic target. It is of great significance to study MAD data based on geomagnetic background. This paper reviews the MAD methods proposed by researchers in recent years and summarizes them into two categories. One is target based, and the other is noise based. The target-based group of detection methods involves typical magnetic search systems based on the assumption that the magnetometer and the target move relative to each other, which applies to the case where the target motion obeys a specific tracking time mode. The noise-based detection methods are based on statistical analyses of magnetometer noise and are suitable for situations in which assumptions about the mutual motion of the target and the magnetometer cannot be made. The magnetic dipole model is introduced in the second part of the paper, and then an algorithm based on the standard orthogonal basis function (OBF) decomposition is proposed. The algorithm parallels the target to a magnetic dipole and decomposes it into a linear combination of several standard OBFs. Solving for the coefficients of the basis function yields the signal energy function in the basis function space. The results show that the signal-to-noise ratio of the data processed by the OBF algorithm is significantly improved. The OBF can be further optimized; for example, when using a single magnetometer to conduct MAD, the five OBFs can be simplified to three OBFs; to locate the target more accurately when using two magnetometers to form the gradient magnetometer, the five OBFs can be simplified into four OBFs. The OBF algorithm is not very effective in the detection of non-Gaussian white noise, soa model-based auto-regression method with white filtering can be used. In the third part of the paper, four methods based on noise detection are introduced in detail: the minimum entropy filtering method, the high-order crossing MAD method, the stochastic resonance method and wavelet transform. Their respective principles and detection sensitivities are discussed in detail. At the end of the paper, the MAD methods are summarized, their advantages and disadvantages are discussed, and the future development of MAD is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
orange完成签到 ,获得积分10
1秒前
传奇3应助橘艾采纳,获得10
4秒前
4秒前
swimming完成签到 ,获得积分10
6秒前
yes完成签到 ,获得积分10
14秒前
15秒前
苗修杰完成签到,获得积分10
16秒前
19秒前
21秒前
21秒前
高高的绿蓉完成签到,获得积分20
22秒前
czz完成签到,获得积分20
24秒前
Jasper应助夏侯乌采纳,获得10
24秒前
nono发布了新的文献求助10
26秒前
七慕凉发布了新的文献求助10
28秒前
33秒前
34秒前
夏侯乌发布了新的文献求助10
37秒前
38秒前
39秒前
干净的海云完成签到 ,获得积分10
40秒前
可乐发布了新的文献求助10
44秒前
45秒前
gstaihn完成签到,获得积分10
45秒前
48秒前
隐形曼青应助punch采纳,获得10
50秒前
Jack80发布了新的文献求助50
51秒前
52秒前
52秒前
xixiazhiwang完成签到 ,获得积分10
53秒前
Yan发布了新的文献求助10
56秒前
58秒前
59秒前
59秒前
punch完成签到,获得积分10
1分钟前
无极微光应助czz采纳,获得20
1分钟前
punch发布了新的文献求助10
1分钟前
田様应助不想上班了采纳,获得10
1分钟前
科研通AI2S应助punch采纳,获得10
1分钟前
所产生的发关注了科研通微信公众号
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493690
求助须知:如何正确求助?哪些是违规求助? 4591699
关于积分的说明 14434392
捐赠科研通 4524096
什么是DOI,文献DOI怎么找? 2478597
邀请新用户注册赠送积分活动 1463621
关于科研通互助平台的介绍 1436453