A loss-balanced multi-task model for simultaneous detection and segmentation

分割 计算机科学 帕斯卡(单位) 目标检测 人工智能 推论 任务(项目管理) 对象(语法) 机器学习 深度学习 尺度空间分割 多任务学习 计算机视觉 基于分割的对象分类 图像分割 模式识别(心理学) 经济 管理 程序设计语言
作者
Wenwen Zhang,Kunfeng Wang,Yutong Wang,Lan Yan,Fei–Yue Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:428: 65-78 被引量:14
标识
DOI:10.1016/j.neucom.2020.11.024
摘要

Scene understanding comes in many flavors, two of the most popular being object detection and semantic segmentation, which act as two important aspects for scene understanding, and are applied to many areas, such as autonomous driving and intelligent surveillance. Although much progress has already been made, the two tasks of object detection and semantic segmentation are often investigated independently. In practice, scene understanding is complicated, and comprises many sub-tasks, so that research of learning multiple tasks simultaneously with a single model is feasible. With the interrelated goals of these two tasks, there is a strong motivation to improve the object detection accuracy with the help of semantic segmentation, and vice versa. In this paper, we propose a loss-balanced multi-task model for simultaneous object detection and semantic segmentation. We explore multi-task learning with sharing parameters based on deep learning to realize improved object detection and segmentation, and propose a single-stage deep architecture based on multi-task learning, jointly performing object detection and semantic segmentation to boost each other. With no more computation load in the inference compared with the baselines of SSD and FCN, we show that these two tasks, object detection and semantic segmentation, benefit from each other. Experimental results on Pascal VOC and COCO show that our method improves much in object detection and semantic segmentation compared with the corresponding baselines of both tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
verimency发布了新的文献求助20
刚刚
刚刚
熊涛完成签到,获得积分10
刚刚
Alex应助笨笨友安采纳,获得30
1秒前
滕擎发布了新的文献求助10
1秒前
2秒前
搞怪的雨南完成签到,获得积分10
2秒前
Akim应助小笼包采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
xzy998应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
xzy998应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
imchenyin发布了新的文献求助10
5秒前
6秒前
6秒前
畅快的不言完成签到,获得积分10
6秒前
美满平灵发布了新的文献求助30
7秒前
wanci应助风的味道采纳,获得10
7秒前
伴奏小胖完成签到 ,获得积分10
7秒前
Hello应助wangteng采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
wawaeryu发布了新的文献求助10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180