A loss-balanced multi-task model for simultaneous detection and segmentation

分割 计算机科学 帕斯卡(单位) 目标检测 人工智能 推论 任务(项目管理) 对象(语法) 机器学习 深度学习 尺度空间分割 多任务学习 计算机视觉 基于分割的对象分类 图像分割 模式识别(心理学) 经济 管理 程序设计语言
作者
Wenwen Zhang,Kunfeng Wang,Yutong Wang,Lan Yan,Fei–Yue Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:428: 65-78 被引量:14
标识
DOI:10.1016/j.neucom.2020.11.024
摘要

Scene understanding comes in many flavors, two of the most popular being object detection and semantic segmentation, which act as two important aspects for scene understanding, and are applied to many areas, such as autonomous driving and intelligent surveillance. Although much progress has already been made, the two tasks of object detection and semantic segmentation are often investigated independently. In practice, scene understanding is complicated, and comprises many sub-tasks, so that research of learning multiple tasks simultaneously with a single model is feasible. With the interrelated goals of these two tasks, there is a strong motivation to improve the object detection accuracy with the help of semantic segmentation, and vice versa. In this paper, we propose a loss-balanced multi-task model for simultaneous object detection and semantic segmentation. We explore multi-task learning with sharing parameters based on deep learning to realize improved object detection and segmentation, and propose a single-stage deep architecture based on multi-task learning, jointly performing object detection and semantic segmentation to boost each other. With no more computation load in the inference compared with the baselines of SSD and FCN, we show that these two tasks, object detection and semantic segmentation, benefit from each other. Experimental results on Pascal VOC and COCO show that our method improves much in object detection and semantic segmentation compared with the corresponding baselines of both tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Hululu采纳,获得10
刚刚
干啥啥行完成签到,获得积分10
刚刚
1秒前
1秒前
入江直熠完成签到,获得积分10
1秒前
自觉半凡发布了新的文献求助30
1秒前
李健的小迷弟应助杨丽佳采纳,获得10
2秒前
2秒前
标致的从寒完成签到,获得积分10
3秒前
杨春天完成签到,获得积分10
3秒前
foxbt完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Ava应助干啥啥行采纳,获得10
5秒前
5秒前
5秒前
申申如也发布了新的文献求助10
6秒前
1332117762发布了新的文献求助10
6秒前
聪明的行云完成签到,获得积分10
7秒前
8秒前
燕熙发布了新的文献求助20
8秒前
俊逸灵雁发布了新的文献求助10
8秒前
9秒前
9秒前
科研通AI2S应助哟哟哟采纳,获得10
10秒前
10秒前
万能图书馆应助aurora采纳,获得10
11秒前
唐擎汉发布了新的文献求助10
11秒前
A怜发布了新的文献求助10
12秒前
cyl发布了新的文献求助10
13秒前
sea2023完成签到,获得积分10
13秒前
杨丽佳发布了新的文献求助10
13秒前
一半哒哒哒完成签到,获得积分20
14秒前
S.D.L发布了新的文献求助10
14秒前
15秒前
科研混子完成签到,获得积分10
16秒前
sissiarno应助树袋熊采纳,获得30
17秒前
17秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234