Additive Functional Cox Model

协变量 可识别性 功能数据分析 函数主成分分析 计算机科学 推论 比例危险模型 数据挖掘 加性模型 计量经济学 统计 数学 机器学习 人工智能
作者
Erjia Cui,Ciprian M. Crainiceanu,Andrew Leroux
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:30 (3): 780-793 被引量:20
标识
DOI:10.1080/10618600.2020.1853550
摘要

We propose the additive functional Cox model to flexibly quantify the association between functional covariates and time to event data. The model extends the linear functional proportional hazards model by allowing the association between the functional covariate and log hazard to vary nonlinearly in both the functional domain and the value of the functional covariate. Additionally, we introduce critical transformations of the functional covariate which address the weak model identifiability in areas of information sparsity and discuss their impact on interpretation and inference. We also introduce a novel estimation procedure that accounts for identifiability constraints directly during model fitting. Methods are applied to the National Health and Nutrition Examination Survey 2003–2006 accelerometry data and quantify new and interpretable circadian patterns of physical activity that are associated with all-cause mortality. We also introduce a simple and novel simulation framework for generating survival data with functional predictors which resemble the observed data. The accompanying inferential R software is fast, open source, and publicly available. Our data application and simulations are fully reproducible through the accompanying vignette. Supplementary materials for this article are available online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
平常的水壶完成签到,获得积分10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得30
1秒前
0sllls0应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
简单秋完成签到,获得积分10
2秒前
2秒前
何以解忧发布了新的文献求助20
3秒前
DDDD发布了新的文献求助10
3秒前
RMY发布了新的文献求助10
3秒前
lalala完成签到,获得积分10
4秒前
脑洞疼应助Venom采纳,获得10
5秒前
5秒前
zzzzzz发布了新的文献求助10
5秒前
6秒前
6秒前
JamesPei应助伶俐的过客采纳,获得10
6秒前
CodeCraft应助Helen采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827