Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results

扫描仪 计算机科学 算法 协议(科学) 数据挖掘 交叉验证 水准点(测量) 人工智能 模式识别(心理学) 大地测量学 医学 病理 替代医学 地理
作者
Lipeng Ning,Elisenda Bonet‐Carne,Francesco Grussu,Farshid Sepehrband,Enrico Kaden,Jelle Veraart,Stefano B. Blumberg,Can Son Khoo,Marco Palombo,Iasonas Kokkinos,Daniel C. Alexander,Jaume Coll‐Font,Benoît Scherrer,Simon K. Warfield,Süheyla Çetin Karayumak,Yogesh Rathi,Simon Koppers,Leon Weninger,Julia Ebert,Dorit Merhof,Daniel Moyer,Maximilian Pietsch,Daan Christiaens,Rui Azeredo Gomes Teixeira,Jacques‐Donald Tournier,Kurt G. Schilling,Yuankai Huo,Vishwesh Nath,Colin B. Hansen,Justin A. Blaber,Bennett A. Landman,Andrey Zhylka,Josien P. W. Pluim,Greg D. Parker,Umesh Rudrapatna,John Evans,Cyril Charron,Derek K. Jones,Chantal M. W. Tax
出处
期刊:NeuroImage [Elsevier BV]
卷期号:221: 117128-117128 被引量:66
标识
DOI:10.1016/j.neuroimage.2020.117128
摘要

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 ​mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jiwen完成签到,获得积分10
1秒前
Zewen_Li应助lu采纳,获得10
2秒前
Devin Irving完成签到,获得积分10
2秒前
humii发布了新的文献求助10
4秒前
5秒前
难过的冷风完成签到,获得积分10
6秒前
ZhaohuaXie完成签到,获得积分10
8秒前
崇林同学完成签到,获得积分10
9秒前
10秒前
金钰贝儿完成签到,获得积分10
11秒前
浮游应助yss采纳,获得10
11秒前
Sss完成签到,获得积分10
12秒前
xpqiu完成签到,获得积分10
14秒前
TaoJ完成签到,获得积分0
15秒前
三明治完成签到,获得积分20
16秒前
16秒前
zw完成签到,获得积分10
17秒前
我是老大应助quin采纳,获得10
17秒前
18秒前
19秒前
三明治发布了新的文献求助10
20秒前
21秒前
21秒前
Leticia完成签到,获得积分10
23秒前
25秒前
wanci应助七七七采纳,获得10
26秒前
27秒前
Tom2077发布了新的文献求助10
30秒前
33秒前
fengyuenanche完成签到,获得积分10
33秒前
deway发布了新的文献求助10
34秒前
34秒前
caodi关注了科研通微信公众号
37秒前
37秒前
思源应助一只蠢兔子采纳,获得10
37秒前
杨树完成签到,获得积分10
37秒前
37秒前
wang关注了科研通微信公众号
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4912095
求助须知:如何正确求助?哪些是违规求助? 4187304
关于积分的说明 13003664
捐赠科研通 3955373
什么是DOI,文献DOI怎么找? 2168696
邀请新用户注册赠送积分活动 1187211
关于科研通互助平台的介绍 1094459