Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results

扫描仪 计算机科学 算法 协议(科学) 数据挖掘 交叉验证 水准点(测量) 人工智能 模式识别(心理学) 医学 替代医学 大地测量学 病理 地理
作者
Lipeng Ning,Elisenda Bonet‐Carne,Francesco Grussu,Farshid Sepehrband,Enrico Kaden,Jelle Veraart,Stefano B. Blumberg,Can Son Khoo,Marco Palombo,Iasonas Kokkinos,Daniel C. Alexander,Jaume Coll‐Font,Benoît Scherrer,Simon K. Warfield,Süheyla Çetin Karayumak,Yogesh Rathi,Simon Koppers,Leon Weninger,Julia Ebert,Dorit Merhof,Daniel Moyer,Maximilian Pietsch,Daan Christiaens,Rui Azeredo Gomes Teixeira,Jacques‐Donald Tournier,Kurt G. Schilling,Yuankai Huo,Vishwesh Nath,Colin B. Hansen,Justin A. Blaber,Bennett A. Landman,Andrey Zhylka,Josien P. W. Pluim,Greg D. Parker,Umesh Rudrapatna,John Evans,Cyril Charron,Derek K. Jones,Chantal M. W. Tax
出处
期刊:NeuroImage [Elsevier BV]
卷期号:221: 117128-117128 被引量:66
标识
DOI:10.1016/j.neuroimage.2020.117128
摘要

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 ​mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Pfuz发布了新的文献求助10
1秒前
YY完成签到,获得积分10
1秒前
1秒前
顾矜应助111采纳,获得10
2秒前
2秒前
Han完成签到,获得积分10
3秒前
3秒前
人很好的奇奇关注了科研通微信公众号
3秒前
3秒前
刘亿发布了新的文献求助10
4秒前
隐形曼青应助koi采纳,获得10
4秒前
4秒前
kk发布了新的文献求助10
4秒前
小尾巴完成签到,获得积分10
4秒前
羊羊羊发布了新的文献求助10
4秒前
我不会完成签到 ,获得积分10
5秒前
釉质牙医发布了新的文献求助10
5秒前
6秒前
orixero应助科研小蚂蚁采纳,获得10
6秒前
6秒前
搜集达人应助偷影子的人采纳,获得10
6秒前
整齐的茗茗完成签到,获得积分10
7秒前
Bazinga发布了新的文献求助10
8秒前
水滇发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
英俊的铭应助小邢一定行采纳,获得10
9秒前
10秒前
bobocute发布了新的文献求助10
10秒前
Alina1874发布了新的文献求助10
10秒前
董大米发布了新的文献求助10
10秒前
科目三应助Enterprise采纳,获得10
11秒前
酷波er应助cxm666采纳,获得10
11秒前
wanci应助闻涛采纳,获得10
12秒前
共享精神应助PetrichorF采纳,获得10
12秒前
英姑应助专注的故事采纳,获得10
13秒前
yhx完成签到,获得积分20
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642