Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results

扫描仪 计算机科学 算法 协议(科学) 数据挖掘 交叉验证 水准点(测量) 人工智能 模式识别(心理学) 医学 替代医学 大地测量学 病理 地理
作者
Lipeng Ning,Elisenda Bonet‐Carne,Francesco Grussu,Farshid Sepehrband,Enrico Kaden,Jelle Veraart,Stefano B. Blumberg,Can Son Khoo,Marco Palombo,Iasonas Kokkinos,Daniel C. Alexander,Jaume Coll‐Font,Benoît Scherrer,Simon K. Warfield,Süheyla Çetin Karayumak,Yogesh Rathi,Simon Koppers,Leon Weninger,Julia Ebert,Dorit Merhof,Daniel Moyer,Maximilian Pietsch,Daan Christiaens,Rui Azeredo Gomes Teixeira,Jacques‐Donald Tournier,Kurt G. Schilling,Yuankai Huo,Vishwesh Nath,Colin B. Hansen,Justin A. Blaber,Bennett A. Landman,Andrey Zhylka,Josien P. W. Pluim,Greg D. Parker,Umesh Rudrapatna,John Evans,Cyril Charron,Derek K. Jones,Chantal M. W. Tax
出处
期刊:NeuroImage [Elsevier BV]
卷期号:221: 117128-117128 被引量:66
标识
DOI:10.1016/j.neuroimage.2020.117128
摘要

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 ​mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琼12发布了新的文献求助10
1秒前
Firo完成签到,获得积分10
1秒前
1秒前
明亮白筠完成签到,获得积分10
1秒前
含蓄绾绾完成签到,获得积分10
1秒前
三七发布了新的文献求助10
1秒前
清秀灵薇完成签到,获得积分10
1秒前
莫咏怡发布了新的文献求助10
2秒前
Hello应助lumen采纳,获得10
2秒前
黑黑发布了新的文献求助10
2秒前
2秒前
Mania发布了新的文献求助10
3秒前
cy完成签到 ,获得积分10
3秒前
大气凡旋发布了新的文献求助10
3秒前
ZhenpuWang完成签到,获得积分10
4秒前
4秒前
5秒前
tt发布了新的文献求助10
5秒前
5秒前
曾经梨愁发布了新的文献求助10
5秒前
GEN完成签到,获得积分20
6秒前
汉堡包应助优美的书雪采纳,获得10
6秒前
北冥有鱼完成签到,获得积分10
7秒前
FashionBoy应助ll采纳,获得10
7秒前
7秒前
情怀应助琼12采纳,获得10
8秒前
andyz完成签到,获得积分10
8秒前
杨欢欢发布了新的文献求助10
9秒前
充电宝应助yuxuanguo采纳,获得10
9秒前
啊萍发布了新的文献求助10
9秒前
芥楠发布了新的文献求助10
9秒前
Melody发布了新的文献求助10
10秒前
11秒前
桔子和橙发布了新的文献求助30
11秒前
11秒前
阿达关注了科研通微信公众号
11秒前
执着的小刺猬完成签到,获得积分10
11秒前
12秒前
曹坤发布了新的文献求助10
12秒前
压缩发布了新的文献求助10
12秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238452
求助须知:如何正确求助?哪些是违规求助? 4406131
关于积分的说明 13712854
捐赠科研通 4274562
什么是DOI,文献DOI怎么找? 2345601
邀请新用户注册赠送积分活动 1342629
关于科研通互助平台的介绍 1300627