已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results

扫描仪 计算机科学 算法 协议(科学) 数据挖掘 交叉验证 水准点(测量) 人工智能 模式识别(心理学) 医学 替代医学 大地测量学 病理 地理
作者
Lipeng Ning,Elisenda Bonet‐Carne,Francesco Grussu,Farshid Sepehrband,Enrico Kaden,Jelle Veraart,Stefano B. Blumberg,Can Son Khoo,Marco Palombo,Iasonas Kokkinos,Daniel C. Alexander,Jaume Coll‐Font,Benoît Scherrer,Simon K. Warfield,Süheyla Çetin Karayumak,Yogesh Rathi,Simon Koppers,Leon Weninger,Julia Ebert,Dorit Merhof,Daniel Moyer,Maximilian Pietsch,Daan Christiaens,Rui Azeredo Gomes Teixeira,Jacques‐Donald Tournier,Kurt G. Schilling,Yuankai Huo,Vishwesh Nath,Colin B. Hansen,Justin A. Blaber,Bennett A. Landman,Andrey Zhylka,Josien P. W. Pluim,Greg D. Parker,Umesh Rudrapatna,John Evans,Cyril Charron,Derek K. Jones,Chantal M. W. Tax
出处
期刊:NeuroImage [Elsevier]
卷期号:221: 117128-117128 被引量:66
标识
DOI:10.1016/j.neuroimage.2020.117128
摘要

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 ​mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘MTY完成签到 ,获得积分10
2秒前
科研通AI6应助上官采纳,获得10
3秒前
Fn完成签到 ,获得积分10
4秒前
无奈聪展完成签到 ,获得积分10
5秒前
医研完成签到 ,获得积分10
5秒前
6秒前
奋斗的凡完成签到 ,获得积分10
7秒前
7秒前
林间完成签到,获得积分20
8秒前
wang完成签到 ,获得积分10
8秒前
lqqq完成签到 ,获得积分10
9秒前
短短急个球完成签到,获得积分10
10秒前
所所应助ceeray23采纳,获得20
11秒前
Noob_saibot发布了新的文献求助30
12秒前
趁热拿铁完成签到 ,获得积分10
13秒前
张佳星完成签到 ,获得积分10
14秒前
李健的粉丝团团长应助zgy采纳,获得10
16秒前
2025alex完成签到,获得积分10
17秒前
17秒前
18秒前
小蘑菇应助pluviophile采纳,获得10
20秒前
两仪发布了新的文献求助10
21秒前
23秒前
英勇可乐发布了新的文献求助10
24秒前
牛八先生完成签到,获得积分10
27秒前
32秒前
保奔完成签到,获得积分10
33秒前
Simpson完成签到 ,获得积分0
33秒前
爱笑的绮露完成签到 ,获得积分10
33秒前
骨科小李完成签到,获得积分10
34秒前
tkx是流氓兔完成签到,获得积分10
34秒前
mmy完成签到 ,获得积分10
35秒前
保奔发布了新的文献求助10
36秒前
36秒前
动听衬衫发布了新的文献求助10
37秒前
无花果应助英勇可乐采纳,获得10
38秒前
潇湘完成签到 ,获得积分10
38秒前
安静无招完成签到 ,获得积分10
38秒前
何为完成签到 ,获得积分10
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590231
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794913
捐赠科研通 4630761
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576