Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results

扫描仪 计算机科学 算法 协议(科学) 数据挖掘 交叉验证 水准点(测量) 人工智能 模式识别(心理学) 医学 替代医学 大地测量学 病理 地理
作者
Lipeng Ning,Elisenda Bonet‐Carne,Francesco Grussu,Farshid Sepehrband,Enrico Kaden,Jelle Veraart,Stefano B. Blumberg,Can Son Khoo,Marco Palombo,Iasonas Kokkinos,Daniel C. Alexander,Jaume Coll‐Font,Benoît Scherrer,Simon K. Warfield,Süheyla Çetin Karayumak,Yogesh Rathi,Simon Koppers,Leon Weninger,Julia Ebert,Dorit Merhof,Daniel Moyer,Maximilian Pietsch,Daan Christiaens,Rui Azeredo Gomes Teixeira,Jacques‐Donald Tournier,Kurt G. Schilling,Yuankai Huo,Vishwesh Nath,Colin B. Hansen,Justin A. Blaber,Bennett A. Landman,Andrey Zhylka,Josien P. W. Pluim,Greg D. Parker,Umesh Rudrapatna,John Evans,Cyril Charron,Derek K. Jones,Chantal M. W. Tax
出处
期刊:NeuroImage [Elsevier]
卷期号:221: 117128-117128 被引量:66
标识
DOI:10.1016/j.neuroimage.2020.117128
摘要

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 ​mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马明旋完成签到,获得积分20
刚刚
浮游应助菜鸟采纳,获得10
刚刚
bkagyin应助XXaaxxxx采纳,获得10
刚刚
1秒前
lyx1997发布了新的文献求助10
1秒前
我爱科研发布了新的文献求助10
2秒前
qianzi完成签到 ,获得积分10
2秒前
2秒前
口口完成签到,获得积分10
2秒前
香蕉觅云应助mei采纳,获得10
3秒前
xinzezoe发布了新的文献求助10
3秒前
哎嘿发布了新的文献求助10
3秒前
阿瓜发布了新的文献求助10
3秒前
奋斗的冬瓜完成签到,获得积分20
3秒前
谈笑间发布了新的文献求助10
3秒前
3秒前
完美世界应助梅天豪采纳,获得10
3秒前
gbtj123发布了新的文献求助10
3秒前
Wianiu完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
清爽冰露发布了新的文献求助10
6秒前
廿一雨发布了新的文献求助10
6秒前
一目发布了新的文献求助10
6秒前
6秒前
Paranoid完成签到 ,获得积分10
6秒前
6秒前
我爱科研完成签到,获得积分10
7秒前
仁爱的秋天完成签到 ,获得积分10
7秒前
菜鸟完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
Hello应助zy采纳,获得10
8秒前
骆驼顶顶完成签到,获得积分20
8秒前
8秒前
研友_VZG7GZ应助孙友浩采纳,获得10
8秒前
偷马桶发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430157
求助须知:如何正确求助?哪些是违规求助? 4543397
关于积分的说明 14186899
捐赠科研通 4461523
什么是DOI,文献DOI怎么找? 2446207
邀请新用户注册赠送积分活动 1437454
关于科研通互助平台的介绍 1414381