Adaptive variational mode decomposition and its application to multi-fault detection using mechanical vibration signals

振动 断层(地质) 解耦(概率) 控制理论(社会学) 计算机科学 算法 冗余(工程) 包络线(雷达) 特征提取 工程类 人工智能 控制工程 声学 物理 控制(管理) 地震学 地质学 操作系统 电信 雷达
作者
Xiuzhi He,Xiaoqin Zhou,Wennian Yu,Yixuan J. Hou,Chris K. Mechefske
出处
期刊:Isa Transactions [Elsevier]
卷期号:111: 360-375 被引量:84
标识
DOI:10.1016/j.isatra.2020.10.060
摘要

Vibration-based feature extraction of multiple transient fault signals is a challenge in the field of rotating machinery fault diagnosis. Variational mode decomposition (VMD) has great potential for multiple faults decoupling because of its equivalent filtering characteristics. However, the two key hyper-parameters of VMD, i.e., the number of modes and balancing parameter, require to be predefined, thereby resulting in sub-optimal decomposition performance. Although some studies focused on the adaptive parameter determination, the problems in these improved methods like mode redundancy or being sensitive to random impacts still need to be solved. To overcome these drawbacks, an adaptive variational mode decomposition (AVMD) method is developed in this paper. In the proposed method, a novel index called syncretic impact index (SII) is firstly introduced for better evaluation of the complex impulsive fault components of signals. It can exclude the effects of interference terms and concentrate on the fault impacts effectively. The optimal parameters of VMD are selected based on the index SII through the artificial bee colony (ABC) algorithm. The envelope power spectrum, proved to be more capable for fault feature extraction than the envelope spectrum, is applied in this study. Analysis on simulated signals and two experimental applications based on the proposed method demonstrates its effectiveness over other existing methods. The results indicate that the proposed method outperforms in separating impulsive multi-fault signals, thus being an efficient method for multi-fault diagnosis of rotating machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
18080298667关注了科研通微信公众号
1秒前
orixero应助孤独靖柏采纳,获得10
2秒前
DAYE发布了新的文献求助10
2秒前
BowieHuang应助ccc采纳,获得10
3秒前
3秒前
4秒前
李健应助oh采纳,获得10
4秒前
4秒前
互助棍哥完成签到,获得积分10
4秒前
6秒前
代纤绮发布了新的文献求助10
7秒前
熙辞辞发布了新的文献求助10
8秒前
8秒前
孤独靖柏完成签到,获得积分10
9秒前
蓝天应助顺利的问寒采纳,获得30
10秒前
Keyto7应助健忘雅寒采纳,获得20
11秒前
汉堡包应助无情的尔风采纳,获得10
12秒前
12秒前
13秒前
古或今发布了新的文献求助10
13秒前
CipherSage应助无限昊强采纳,获得10
15秒前
孤独靖柏发布了新的文献求助10
16秒前
乐乐应助oh采纳,获得10
17秒前
wuchun完成签到,获得积分10
18秒前
18秒前
18秒前
FashionBoy应助whw采纳,获得10
20秒前
XIEQ发布了新的文献求助10
21秒前
23秒前
戴锐发布了新的文献求助10
23秒前
脑洞疼应助古或今采纳,获得10
24秒前
谌倪完成签到 ,获得积分10
26秒前
30秒前
SciGPT应助oh采纳,获得10
33秒前
33秒前
38秒前
熙辞辞完成签到,获得积分10
39秒前
KB完成签到,获得积分10
40秒前
whw发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648507
关于积分的说明 14685107
捐赠科研通 4590468
什么是DOI,文献DOI怎么找? 2518535
邀请新用户注册赠送积分活动 1491159
关于科研通互助平台的介绍 1462460