A New Approach for Reconstruction of IMFs of Decomposition and Ensemble Model for Forecasting Crude Oil Prices

希尔伯特-黄变换 自回归积分移动平均 自相关 计算机科学 西德克萨斯州中级 自回归模型 人工神经网络 分解 模式(计算机接口) 数据挖掘 人工智能 时间序列 算法 机器学习 计量经济学 数学 统计 滤波器(信号处理) 操作系统 波动性(金融) 生物 计算机视觉 生态学
作者
Peng Xu,Muhammad Aamir,Ani Shabri,Muhammad Ishaq,Adnan Aslam,Li Li
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2020: 1-23 被引量:27
标识
DOI:10.1155/2020/1325071
摘要

Accurate forecasting for the crude oil price is important for government agencies, investors, and researchers. To cope with this issue, in this paper, a new paradigm is designed for the reconstruction of intrinsic mode functions (IMFs) of decomposition and ensemble models to reduce the complexity in computation and to enhance the forecasting accuracy. Decomposition and ensemble methodologies significantly enhance the forecasting accuracy under the framework of “divide and conquer” with the proposed reconstruction of IMFs method. The proposed approach used the autocorrelation at lag 1 of all IMFs for the reconstruction. The ensemble empirical mode decomposition (EEMD) technique is employed to decompose the data into different IMFs. Models that utilized the decomposed data relatively perform well, as compared to its application to the undecomposed data. However, sometimes, the decomposition may produce poor results due to the error accumulation at the end. Thus, in this study, the reconstruction of IMFs is proposed for minimizing the aforementioned error, thereby increasing the forecasting accuracy. The Brent and West Texas Intermediate (WTI) datasets (daily and weekly) are exploited to compare the forecasting performance of autoregressive integrated moving average (ARIMA) along with artificial neural network (ANN) models with the decomposed data. The results have proven that the new paradigm of reconstruction of IMFs through autocorrelation was a better and simple strategy that significantly improved the performance of single models including ARIMA and ANN. Hence, it is concluded that the proposed model takes less computational time and achieved higher forecasting accuracy with the reconstruction of IMFs as opposed to using all IMFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助火星上的穆采纳,获得10
3秒前
3秒前
4秒前
CAH发布了新的文献求助10
4秒前
5秒前
dawn发布了新的文献求助10
6秒前
6秒前
稳重向南发布了新的文献求助10
6秒前
6秒前
科研通AI5应助夏虫采纳,获得10
7秒前
7秒前
8秒前
sen发布了新的文献求助10
8秒前
9秒前
冷艳短靴发布了新的文献求助30
10秒前
10秒前
10秒前
喵呜发布了新的文献求助30
11秒前
有点抽风应助幸运之裤1111采纳,获得50
11秒前
11秒前
Ywr发布了新的文献求助10
11秒前
长乐发布了新的文献求助30
12秒前
李李05发布了新的文献求助10
13秒前
阳光问安完成签到 ,获得积分10
13秒前
13秒前
14秒前
今天你读文献了吗完成签到,获得积分10
16秒前
16秒前
17秒前
091发布了新的文献求助10
17秒前
冷艳短靴完成签到,获得积分10
17秒前
doocan完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
星辰大海应助sjhksdh采纳,获得10
19秒前
19秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3585095
求助须知:如何正确求助?哪些是违规求助? 3154027
关于积分的说明 9499819
捐赠科研通 2856754
什么是DOI,文献DOI怎么找? 1570175
邀请新用户注册赠送积分活动 736007
科研通“疑难数据库(出版商)”最低求助积分说明 721485