You must choose, but choose wisely: Model-based approaches for microbial community analysis

计算机科学 基因组 数据科学 微生物生态学 计数数据 微生物群 生态学 机器学习 生化工程 数据挖掘 生物 数学 生物信息学 工程类 生物化学 泊松分布 基因 统计 遗传学 细菌
作者
Márcio Fernandes Alves Leite,Eiko E. Kuramae
出处
期刊:Soil Biology & Biochemistry [Elsevier BV]
卷期号:151: 108042-108042 被引量:40
标识
DOI:10.1016/j.soilbio.2020.108042
摘要

Soil microbial community data produced by next-generation sequencing platforms has introduced a new era in microbial ecology studies but poses a challenge for data analysis: huge tables with highly sparse data combined with methodological limitations leading to biased analyses. Methodological studies have attempted to improve data interpretation via data transformation and/or rarefaction but usually neglect the assumptions required for an appropriate analysis. Advances in both mathematics and computation are now making model-based approaches feasible, especially latent variable modeling (LVM). LVM is a cornerstone of modern unsupervised learning that permits the evaluation of evolutionary, temporal, and count structure in a unified approach that directly incorporates the data distribution. Despite these advantages, LVM is rarely applied in data analyses of the soil microbiome. Here, we review available methods to handle the characteristics of soil microbial data obtained from next-generation sequencing and advocate for model-based approaches. We focus on the importance of assumption checking for guiding the selection of the most appropriate method of data analysis. We also provide future directions by advocating for the consideration of the dataset produced by sequencing as a representation of microbial detections instead of abundances and for the adoption of hierarchical models to convert these detections into estimated abundances prior to evaluating the microbial community. In summary, we show that model assessment is important for qualifying interpretations and can further guide refinements in subsequent analyses. We have only begun to understand the factors regulating soil microbial communities and the impacts of this microbiota on the environment/ecosystem. Understanding the assumptions of new methods is essential to fully harness their power to test hypotheses using high-throughput sequencing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
调皮的海之完成签到,获得积分10
2秒前
王开晙完成签到,获得积分10
2秒前
2秒前
4秒前
5秒前
雪儿完成签到,获得积分10
5秒前
王开晙发布了新的文献求助10
5秒前
HJL发布了新的文献求助30
7秒前
du发布了新的文献求助20
7秒前
所所应助不如看海采纳,获得10
7秒前
赵坤煊完成签到 ,获得积分0
7秒前
NexusExplorer应助Dain采纳,获得10
8秒前
Apocalypse_zjz完成签到,获得积分10
9秒前
10秒前
盛夏完成签到,获得积分10
10秒前
qianlan发布了新的文献求助10
10秒前
paper发布了新的文献求助50
10秒前
阿斯特雷加完成签到,获得积分20
12秒前
bofu发布了新的文献求助10
12秒前
12秒前
emmm发布了新的文献求助10
14秒前
博修发布了新的文献求助10
15秒前
16秒前
流浪完成签到,获得积分10
16秒前
17秒前
qianlan完成签到,获得积分10
17秒前
副本完成签到 ,获得积分10
17秒前
云雨完成签到 ,获得积分10
18秒前
bofu发布了新的文献求助10
18秒前
run发布了新的文献求助10
19秒前
不如看海发布了新的文献求助10
21秒前
dreamwalk完成签到 ,获得积分10
22秒前
田様应助yuting采纳,获得10
24秒前
科研通AI2S应助博修采纳,获得10
24秒前
bofu发布了新的文献求助10
24秒前
25秒前
星辰大海应助大号安全蛋采纳,获得10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150