Co-Embedding of Nodes and Edges With Graph Neural Networks

计算机科学 理论计算机科学 人工神经网络 图嵌入 嵌入 图形 模式识别(心理学) 人工智能 图论 组合数学 数学
作者
Xiaodong Jiang,Ronghang Zhu,Pengsheng Ji,Sheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7075-7086 被引量:44
标识
DOI:10.1109/tpami.2020.3029762
摘要

Graph, as an important data representation, is ubiquitous in many real world applications ranging from social network analysis to biology. How to correctly and effectively learn and extract information from graph is essential for a large number of machine learning tasks. Graph embedding is a way to transform and encode the data structure in high dimensional and non-euclidean feature space to a low dimensional and structural space, which is easily exploited by other machine learning algorithms. We have witnessed a huge surge of such embedding methods, from statistical approaches to recent deep learning methods such as the graph convolutional networks (GCN). Deep learning approaches usually outperform the traditional methods in most graph learning benchmarks by building an end-to-end learning framework to optimize the loss function directly. However, most of the existing GCN methods can only perform convolution operations with node features, while ignoring the handy information in edge features, such as relations in knowledge graphs. To address this problem, we present CensNet , C onvolution with E dge- N ode S witching graph neural network, for learning tasks in graph-structured data with both node and edge features. CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space. By using line graph of the original undirected graph, the role of nodes and edges are switched, and two novel graph convolution operations are proposed for feature propagation. Experimental results on real-world academic citation networks and quantum chemistry graphs show that our approach achieves or matches the state-of-the-art performance in four graph learning tasks, including semi-supervised node classification, multi-task graph classification, graph regression, and link prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pyc完成签到,获得积分10
1秒前
2秒前
2秒前
seven完成签到,获得积分10
3秒前
3秒前
charles发布了新的文献求助20
3秒前
3秒前
3秒前
啦啦啦发布了新的文献求助10
4秒前
努力站桩的奶酪完成签到,获得积分10
4秒前
4秒前
ZZ0901完成签到,获得积分10
4秒前
Hello应助bofu采纳,获得30
4秒前
魔笛的云宝完成签到,获得积分10
5秒前
02完成签到,获得积分10
5秒前
5秒前
夏目友人张应助LmaPN7采纳,获得10
6秒前
缥缈的采蓝完成签到,获得积分10
6秒前
小白菜发布了新的文献求助10
6秒前
6秒前
颜之完成签到,获得积分10
7秒前
好( づ ωど)完成签到,获得积分10
7秒前
庞威完成签到 ,获得积分10
7秒前
8秒前
empty发布了新的文献求助10
8秒前
8秒前
Jadon完成签到 ,获得积分10
8秒前
桃源theshy完成签到,获得积分10
9秒前
Sam完成签到,获得积分10
9秒前
英姑应助jerry601采纳,获得10
9秒前
kazemi完成签到,获得积分10
9秒前
10秒前
lee发布了新的文献求助10
10秒前
for_abSCI完成签到,获得积分10
10秒前
zengzeng完成签到,获得积分10
10秒前
烟花应助harmy采纳,获得10
10秒前
xwq发布了新的文献求助10
10秒前
11秒前
wwww完成签到,获得积分10
12秒前
求助完成签到 ,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303771
求助须知:如何正确求助?哪些是违规求助? 2937960
关于积分的说明 8485658
捐赠科研通 2611928
什么是DOI,文献DOI怎么找? 1426406
科研通“疑难数据库(出版商)”最低求助积分说明 662619
邀请新用户注册赠送积分活动 647170