Co-Embedding of Nodes and Edges With Graph Neural Networks

计算机科学 理论计算机科学 人工神经网络 图嵌入 嵌入 图形 模式识别(心理学) 人工智能 图论 组合数学 数学
作者
Xiaodong Jiang,Ronghang Zhu,Pengsheng Ji,Sheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7075-7086 被引量:44
标识
DOI:10.1109/tpami.2020.3029762
摘要

Graph, as an important data representation, is ubiquitous in many real world applications ranging from social network analysis to biology. How to correctly and effectively learn and extract information from graph is essential for a large number of machine learning tasks. Graph embedding is a way to transform and encode the data structure in high dimensional and non-euclidean feature space to a low dimensional and structural space, which is easily exploited by other machine learning algorithms. We have witnessed a huge surge of such embedding methods, from statistical approaches to recent deep learning methods such as the graph convolutional networks (GCN). Deep learning approaches usually outperform the traditional methods in most graph learning benchmarks by building an end-to-end learning framework to optimize the loss function directly. However, most of the existing GCN methods can only perform convolution operations with node features, while ignoring the handy information in edge features, such as relations in knowledge graphs. To address this problem, we present CensNet , C onvolution with E dge- N ode S witching graph neural network, for learning tasks in graph-structured data with both node and edge features. CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space. By using line graph of the original undirected graph, the role of nodes and edges are switched, and two novel graph convolution operations are proposed for feature propagation. Experimental results on real-world academic citation networks and quantum chemistry graphs show that our approach achieves or matches the state-of-the-art performance in four graph learning tasks, including semi-supervised node classification, multi-task graph classification, graph regression, and link prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zcf发布了新的文献求助10
2秒前
3秒前
微笑的桐完成签到 ,获得积分10
3秒前
4秒前
小二郎应助suda采纳,获得10
4秒前
开心发布了新的文献求助10
5秒前
山木完成签到,获得积分20
5秒前
科研通AI6应助lv采纳,获得10
5秒前
桐桐应助天真的枕头采纳,获得10
5秒前
12591发布了新的文献求助10
5秒前
5秒前
5秒前
yyy完成签到 ,获得积分10
6秒前
地啦啦啦发布了新的文献求助10
6秒前
清图完成签到,获得积分10
6秒前
SciGPT应助清脆苑博采纳,获得10
6秒前
菠菜应助AnnieSsy采纳,获得150
6秒前
科研通AI2S应助谦让的落雁采纳,获得10
7秒前
7秒前
伊人不羁发布了新的文献求助10
8秒前
Zhe完成签到,获得积分10
8秒前
Hello应助甜蜜帽子采纳,获得10
9秒前
小瑄发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
冰洁儿完成签到,获得积分10
10秒前
bkagyin应助zhengyalan采纳,获得10
10秒前
AN发布了新的文献求助10
10秒前
贝贝发布了新的文献求助10
10秒前
JamesPei应助光亮笑蓝采纳,获得10
12秒前
头秃科研人完成签到,获得积分10
12秒前
科目三应助urologywang采纳,获得10
13秒前
奥暖将完成签到,获得积分10
13秒前
13秒前
科研通AI6应助九九采纳,获得10
13秒前
xo80完成签到 ,获得积分10
14秒前
认真的裙子完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578007
求助须知:如何正确求助?哪些是违规求助? 4663017
关于积分的说明 14744201
捐赠科研通 4603681
什么是DOI,文献DOI怎么找? 2526640
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465642