Co-Embedding of Nodes and Edges With Graph Neural Networks

计算机科学 理论计算机科学 人工神经网络 图嵌入 嵌入 图形 模式识别(心理学) 人工智能 图论 组合数学 数学
作者
Xiaodong Jiang,Ronghang Zhu,Pengsheng Ji,Sheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7075-7086 被引量:44
标识
DOI:10.1109/tpami.2020.3029762
摘要

Graph, as an important data representation, is ubiquitous in many real world applications ranging from social network analysis to biology. How to correctly and effectively learn and extract information from graph is essential for a large number of machine learning tasks. Graph embedding is a way to transform and encode the data structure in high dimensional and non-euclidean feature space to a low dimensional and structural space, which is easily exploited by other machine learning algorithms. We have witnessed a huge surge of such embedding methods, from statistical approaches to recent deep learning methods such as the graph convolutional networks (GCN). Deep learning approaches usually outperform the traditional methods in most graph learning benchmarks by building an end-to-end learning framework to optimize the loss function directly. However, most of the existing GCN methods can only perform convolution operations with node features, while ignoring the handy information in edge features, such as relations in knowledge graphs. To address this problem, we present CensNet , C onvolution with E dge- N ode S witching graph neural network, for learning tasks in graph-structured data with both node and edge features. CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space. By using line graph of the original undirected graph, the role of nodes and edges are switched, and two novel graph convolution operations are proposed for feature propagation. Experimental results on real-world academic citation networks and quantum chemistry graphs show that our approach achieves or matches the state-of-the-art performance in four graph learning tasks, including semi-supervised node classification, multi-task graph classification, graph regression, and link prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助ccc6195采纳,获得20
1秒前
Mary完成签到 ,获得积分10
2秒前
3秒前
越过山丘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
从剑杭发布了新的文献求助10
4秒前
wg发布了新的文献求助10
5秒前
语恒发布了新的文献求助10
5秒前
上官若男应助zhaohu47采纳,获得10
5秒前
脑洞疼应助结实傲蕾采纳,获得10
5秒前
开心完成签到 ,获得积分10
6秒前
6秒前
HH应助阔达晓博采纳,获得10
7秒前
夏紊发布了新的文献求助10
8秒前
8秒前
8秒前
跳跃的大碗完成签到,获得积分10
8秒前
英吉利25发布了新的文献求助10
10秒前
10秒前
丘比特应助豆包采纳,获得10
10秒前
11秒前
12秒前
居遥发布了新的文献求助10
12秒前
jovrtic发布了新的文献求助10
12秒前
13秒前
话梅糖关注了科研通微信公众号
13秒前
14秒前
汉堡包应助322628采纳,获得10
14秒前
搜集达人应助从剑杭采纳,获得10
14秒前
14秒前
脑洞疼应助谦让的乾采纳,获得10
15秒前
魁梧的如波完成签到 ,获得积分10
15秒前
Lucas应助朝闻道采纳,获得10
16秒前
尊敬的驳完成签到,获得积分10
16秒前
科研通AI6应助111采纳,获得10
16秒前
星星发布了新的文献求助10
16秒前
微微发布了新的文献求助10
17秒前
清脆的果糖完成签到,获得积分10
18秒前
西米发布了新的文献求助10
18秒前
思源应助jackxxx采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770783
求助须知:如何正确求助?哪些是违规求助? 5587536
关于积分的说明 15425401
捐赠科研通 4904207
什么是DOI,文献DOI怎么找? 2638601
邀请新用户注册赠送积分活动 1586484
关于科研通互助平台的介绍 1541557