Co-Embedding of Nodes and Edges With Graph Neural Networks

计算机科学 理论计算机科学 人工神经网络 图嵌入 嵌入 图形 模式识别(心理学) 人工智能 图论 组合数学 数学
作者
Xiaodong Jiang,Ronghang Zhu,Pengsheng Ji,Sheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (6): 7075-7086 被引量:44
标识
DOI:10.1109/tpami.2020.3029762
摘要

Graph, as an important data representation, is ubiquitous in many real world applications ranging from social network analysis to biology. How to correctly and effectively learn and extract information from graph is essential for a large number of machine learning tasks. Graph embedding is a way to transform and encode the data structure in high dimensional and non-euclidean feature space to a low dimensional and structural space, which is easily exploited by other machine learning algorithms. We have witnessed a huge surge of such embedding methods, from statistical approaches to recent deep learning methods such as the graph convolutional networks (GCN). Deep learning approaches usually outperform the traditional methods in most graph learning benchmarks by building an end-to-end learning framework to optimize the loss function directly. However, most of the existing GCN methods can only perform convolution operations with node features, while ignoring the handy information in edge features, such as relations in knowledge graphs. To address this problem, we present CensNet , C onvolution with E dge- N ode S witching graph neural network, for learning tasks in graph-structured data with both node and edge features. CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space. By using line graph of the original undirected graph, the role of nodes and edges are switched, and two novel graph convolution operations are proposed for feature propagation. Experimental results on real-world academic citation networks and quantum chemistry graphs show that our approach achieves or matches the state-of-the-art performance in four graph learning tasks, including semi-supervised node classification, multi-task graph classification, graph regression, and link prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andrew完成签到,获得积分10
1秒前
1秒前
景清完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
WLWLW发布了新的文献求助30
3秒前
3秒前
JamesPei应助now采纳,获得10
4秒前
4秒前
维时完成签到,获得积分10
4秒前
K2L完成签到,获得积分10
6秒前
wdy337发布了新的文献求助10
7秒前
火炉猫猫完成签到,获得积分10
7秒前
果果发布了新的文献求助30
7秒前
11发布了新的文献求助10
7秒前
清河完成签到,获得积分10
8秒前
学术垃圾制造者完成签到,获得积分10
8秒前
南风上北山完成签到,获得积分10
8秒前
9秒前
9秒前
专注的轻完成签到,获得积分10
9秒前
zzy完成签到 ,获得积分10
9秒前
sxs完成签到 ,获得积分10
9秒前
又夏完成签到,获得积分10
10秒前
zhang完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
lizhaoyu应助xiaoliu采纳,获得30
11秒前
wf完成签到,获得积分10
11秒前
红黄蓝完成签到 ,获得积分10
11秒前
张牧之完成签到 ,获得积分10
12秒前
12秒前
失眠的汽车完成签到,获得积分10
12秒前
Ezio_sunhao完成签到,获得积分10
12秒前
江三村发布了新的文献求助10
13秒前
nqj发布了新的文献求助30
13秒前
科研通AI2S应助zxzb采纳,获得10
13秒前
now完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044