亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT iterative vs deep learning reconstruction: comparison of noise and sharpness

医学 迭代重建 图像质量 图像噪声 核医学 信噪比(成像) 血管造影 人工智能 放射科 对比噪声比 数学 图像(数学) 计算机科学 统计
作者
Chankue Park,Ki Seok Choo,Yun Sub Jung,Hee Seok Jeong,Jae‐Yeon Hwang,Mi Sook Yun
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (5): 3156-3164 被引量:103
标识
DOI:10.1007/s00330-020-07358-8
摘要

To compare image noise and sharpness of vessels, liver, and muscle in lower extremity CT angiography between “adaptive statistical iterative reconstruction-V” (ASIR-V) and deep learning reconstruction “TrueFidelity” (TFI). Thirty-seven patients (mean age, 65.2 years; 32 men) with lower extremity CT angiography were enrolled between November and December 2019. Images were reconstructed with two ASIR-V (blending factor of 80% and 100% (AV-100)) and three TFI (low-, medium-, and high-strength-level (TF-H) settings). Two radiologists evaluated these images for vessels (aorta, femoral artery, and popliteal artery), liver, and psoas muscle. For quantitative analyses, conventional indicators (CT number, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR)) and blur metric values (indicating the degree of image sharpness) of selected regions of interest were determined. For qualitative analyses, the degrees of quantum mottle and blurring were assessed. The higher the blending factor in ASIR-V or the strength in TFI, the lower the noise, the higher the SNR and CNR values, and the higher the blur metric values in all structures. The SNR and CNR values of TF-H images were significantly higher than those of AV-80 images and similar to those of AV-100 images. The blur metric values in TFI images were significantly lower than those in ASIR-V images (p < 0.001), indicating increased sharpness. Among all the investigated image procedures, the overall qualitative image quality was best in TF-H images. TF-H was the most balanced image in terms of image noise and sharpness among the examined image combinations. • Deep learning image reconstruction “TrueFidelity” is superior to iterative reconstruction “ASIR-V” regarding image noise and sharpness. • The high-strength “TrueFidelity” approach generated the best image quality among the examined image reconstruction procedures. • In iterative and deep learning CT image reconstruction, the higher the blending and strength factors, the lower the image noise and the poorer the image sharpness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
moyueeer关注了科研通微信公众号
4秒前
4秒前
6秒前
量子星尘发布了新的文献求助10
11秒前
领导范儿应助cheerfulsmurfs采纳,获得10
13秒前
20秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
38秒前
量子星尘发布了新的文献求助10
39秒前
ccc完成签到,获得积分10
55秒前
58秒前
量子星尘发布了新的文献求助10
58秒前
向往完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ghost完成签到 ,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Zhou完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
坚强白凝发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
田様应助SarahG采纳,获得30
2分钟前
持卿应助moyueeer采纳,获得10
2分钟前
英姑应助坚强白凝采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666356
求助须知:如何正确求助?哪些是违规求助? 3225391
关于积分的说明 9762943
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607588
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188